묻고 답해요
150만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
순위 정보를
불러오고 있어요
-
해결됨[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
RTMDet video 느린 문제
안녕하세요 강의는 들었는데 외적으로 질문이 있습니다.현재 회사 개발로 Object Detection 모델을 사용할려고 하는데 yolo는 라이센스 문제로 인해 사용을 못하고 MMDetection으로 RTMDet를 학습하여 video_demo.py를 통해 검출 결과 테스트를 진행을 했는데output으로 저장된 동영상은 정상적인 속도로 실행이 되지만 show 옵션을 통해gui 영상으로 보면 video frame이 낮은듯 엄청 느리고 끊기게 실행이 됩니다. 이게 정상적인건지 나중에 web cam으로 갔을때도 frame이 낮게 끊기듯이 보일지 궁금해서 질문 남깁니다. 그리고 실무에서도 라이센스 문제 없이 가장 많이 쓰이는 object detection 알고리즘이 있는지도 궁금합니다. 좋은 강의 항상 감사합니다.
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
LSTM 모델 학습 관련한 질문입니다.
- 강의 영상에 대한 질문이 있으시면, 상세히 문의를 작성해주시면, 주말/휴일 제외, 2~3일 내에 답변드립니다 (이외의 문의는 평생 강의이므로 양해를 부탁드립니다.)- 강의 답변이 도움이 안되셨다면, dream@fun-coding.org 로 메일 주시면 재검토하겠습니다. - 괜찮으시면 질문전에 챗GPT 와 구글 검색을 꼭 활용해보세요~- 잠깐! 인프런 서비스 운영(다운로드 방법포함) 관련 문의는 1:1 문의하기를 이용해주세요.올려준 강의 중에서 섹션 16의 주식 데이터 예측하기를 수강하던 중에 궁금한 점이 생겼습니다.각 날짜의 시작 가격을 입력으로 넣고 마감 가격을 정답으로 했는데, 그러면 추후 학습된 모델을 이용해서 예측을 할 때 2일 또는 3일 뒤의 가격을 예측할 수 있나요?다른 학습 모델을 만들어야 하나요?
-
미해결딥러닝 CNN 완벽 가이드 - Pytorch 버전
numpy, pandas
안녕하세요. 선생님numpy, pandas가 아직 익숙하지 않은데, 이 경우 어떤 교재나 강의를 보면서 하는걸 추천드리시나요?
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
MSE LOSS 관련
안녕하세요. 강의 듣다가 의문사항이 있어 질문드립니다.공유해주신 pdf 파일에서 07.multilabel_classification.pdf 에서BCELOSS 함수와 Binary classification(이진분류)에 적힌 내용입니다. Regression 문제에서 mse loss 함수를 사용하면 , 함수가 non-convex 한 이슈가 있다고 적혀있는데Regression 이 아니라 classification 문제에서 발생하는 이슈가 아닌가싶어 질문드립니다. mse loss 함수가 non-convex한 이슈가 발생한다는 점이 왜 언급된건지 궁금합니다.
-
미해결최신 딥러닝 기술과 객체인식
질문하나 있습니당
혹시 메일 하나 받을 수 있을까요? 뭐 하나 제안드리고 싶은게 있어서요...ㅎㅎㅎ
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
test시 minibatch 사용?
안녕하세요. 강의 잘 보고 있습니다.학습시 minibatch를 사용했다면, test시에서 minibatch 수만큼 사용하여 prediction한다고 하셨는데,제가 알고 있던 것과 좀 달라 문의드립니다.학습할때는 minibatch gradient descent를 사용해 학습하더라도, 테스트할때는 minibatch 만큼 인풋을 사용할 필요가 없을것 같은데요.예를들어 한개의 데이터(여러 feature를가진)만을 인풋으로 넣어도 당연히, output인 집값을 잘 예측해야하고,minibatch 이상의 데이터 수를 넣어도 역시 잘 예측해야 맞는게 아닌가 싶습니다.미니배치를 쓰더라도 데이터셋전체를 한번의 epoch안에 다 사용해서모델을 튜닝하고 epoch을 반복하니까,평가할때는 미니배치랑은 전혀 상관없는것으로 알고있었는데, 아닌가요? 감사합니다.
-
해결됨실리콘밸리 엔지니어와 함께하는 MLflow
MLFlow model versioning 방법 문의
언제든지 질문이 있으시면 물어보세요! 질문을 하시면서 배우는 겁니다mlflow에서 experiment에 기록된 모델을 register model 버튼을 눌러서 models로 옮겼는데요혹시 버튼을 누르지 않고도 experiment에 등록된 model을 옮기는 방법이 있을까요?
-
미해결최신 딥러닝 기술 Vision Transformer 개념부터 Pytorch 구현까지
mean attention distance
vit 결과 부분에서 mean attention distance가 멀다는게 왜 전체적으로 본다는걸 의미하는지 잘 모르겠습니다
-
미해결수학 없이 시작하는 인공지능 첫걸음: 기초부터 최신 트렌드까지
강화학습에 보상과 처벌이라고 한다면...
안녕하세요 재미있는 강의 잘보고있습니다. 강화학습에 보상과 처벌에 대해 질문이있습니다. 정의를 보상과 처벌이라고했지만 잘한 행동이면 예를들어 데이터를 1을주고 못하면 데이터를 0을주면서 컴퓨터가 잘한 행동인지 아닌지를 구별하게하는 용도일뿐인걸로 이해가되는데 맞는지 궁금합니다. 감사합니다.
-
미해결[AI 실무] AI Research Engineer를 위한 논문 구현 시작하기 with PyTorch
cuda sdk 설치 중 질문이 있습니다.(쌤~~추가질문 댓글로 올려놨으니 답변 부탁드려용~~)
cuda sdk에서 6.0을 설치할려고 하는데 pytouch install에서 링크(https://pytorch.org/get-started/previous-versions/)여기서 어느부분을 복사해야할까요?윈도우입니다.
-
미해결6일 만에 배우는 파이토치 딥러닝 기초
3-4 이진분류 모델링 실습 원핫 인코딩 질문 드립니다.
안녕하세요.3-4 이진분류 모델링 실습 .ipynb 파일에서 궁금증이 생겨 질문 드립니다.이직 여부 예측 분류 문제에서 직원 샘플에 대해 여러 가지 종류의 feature가 있는 것을 알 수 있습니다.이 feature 중에는 숫자형 데이터도 존재하고, 범주형 데이터, 문자형 데이터(drop해서 삭제)도 존재합니다.숫자형 데이터 같은 경우에는 그대로 모델링에 사용해도 되지만, 범주형 데이터 같은 경우에는숫자 1 ~ 5 혹은 1 ~ 4 형태이긴 하지만 해당 숫자가 연속성을 가진 숫자가 아니고, 특정 의미(Bad, Good 등)를 가지는 범주를 나타내는 형태로 의미가 파악이 됩니다. 그렇기에 해당 데이터들에는 원핫 인코딩을 해야 할 것이라고 생각이 되는데, 이러한 생각이맞는지 여쭈어 보고 싶습니다. 더불어 문자 데이터 feature는 삭제하고, 범주형 데이터는 원핫 인코딩을 하고, 숫자형 데이터는그대로 이용해서 모델을 학습하고 예측을 한 결과, 이직 여부에서 Yes(1.0)인 경우에서의 정밀도와 재현율이 상당히 낮게 나오는 것을 확인할 수 있었습니다.그래서 혹시 Yes(1.0)이 200개, No(0.0)이 1050개로 차이가 나서 이런 결과가 나온 것인가 싶어 훈련, 평가 데이터 분류에서 stratify=y를 하였는데도 결과는 크게 달라지지 않았습니다. 이에 대해서도 선생님께 여쭈어 보고 싶습니다. 읽어주셔서 감사합니다.
-
미해결직관적으로 이해하는 딥러닝 트랜스포머
모듈
안녕하세요 실습 구현 RNN에서 MyRNN이 모듈을 상속받는단게 어떤 의미인지 알 수 있을까요?
-
미해결[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
논문 구현
강의 제목이 논문 구현인데 논문에 대해서는 너무 짧은거같습니다 ㅠ 혹시 연구원(강사) 님 다른 강의추천 해주실수있나요..
-
미해결딥러닝 CNN 완벽 가이드 - TFKeras 버전
Boston 코랩 실습
안녕하세요. 코랩에서 해당 실습을 진행하고자 합니다. 현재 코랩 내의 사이킷런 버전이 1.6.1이며, 안내해주신 방법으로 버전 재설치가 되지 않아서 문의를 남깁니다. 버전 설치 코드에 대한 오류는 다음과 같습니다. 확인해주시면 감사하겠습니다!
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part3]
Average Test loss 계산식 문의
11_MILTI-LABEL-CLASSIFICATION-DROPOUT-BATCHNORMALIZATION.ipynb 파일의 테스트 셋 기반 Evaluation 코드 질문이 있어서 문의 드립니다. test_loss /= len(test_batches.dataset)평균 Test loss를 보기 위해서는 뒤에 .dataset이 빠져야 되는 것이 아닌가 싶어서 문의 드립니다.loss를 구하는 과정은 minibatch 단위로 구했기 때문에 minibatch로 나누어야 평균 Test loss가 아닌가 싶습니다.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
yolo 학습 관련
안녕하세요 강사님! 강사님의 강의를 듣고 현재 yolo를 이용해 간단한 프로젝트를 하나 진행해보려고 하는데 몇가지 질문 사항이 생겨 글을 적습니다.전체적인 프로젝트 개요는 식물앞에 카메라를 두고 식물에 해충 및 질병 발생을 detect하는 모델을 만드려고 합니다.이때 카메라에 라즈베리파이 같은 소형 컴퓨터를 달아 모델을 운용하려는 계획이라 yolo의 높은 버전보다 yolo v5 간소화 버전들을 사용해야 겠다고 결정했는데 괜찮은 선택인지 궁금합니다.해충과 식물의 질병 부위 이미지 데이터셋으로 모델을 학습 시키려고 하는데 이때 coco dataset으로 pretrained된 모델을 사용해야 하는지 아니면 모델 구성부터 새로 한 후 원하는 해충/질병 이미지만 학습 시켜야 하는건지 궁금합니다.감사합니다!!
-
미해결모두를 위한 딥러닝 - 기본적인 머신러닝과 딥러닝 강좌
computation graph 만드는 부분에서 마지만 출력오류
Session 부분이 없다는 걸로 나오는데,, 그럼 아래와 같이 출력이 되려면 코드를 어떻게 수정해야 할까요?
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
[section 14 / [실습] 직접 만든 CNN 모델과 ResNet, VGGNet을 활용한 CV 프로젝트] transforms.Normalize 질문
cifar10 데이터셋에 대하여 Normalize를 적용하는 이유가 궁금합니다.mean과 std 리스트에 들어있는 값의 의미가 무엇인가요?이미 ToTensor()로 0~1값의 스케일링 된 데이터를, 표준화까지 적용하여 평균0, 분산 1로 만드는데 장점이 있는건가요??normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) def get_dataloaders(): train_data = torchvision.datasets.CIFAR10( root="../.cache", train=True, download=True, transform=transforms.Compose([torchvision.transforms.ToTensor(), normalize]), )
-
미해결비전공자/입문자를 위한 Data Science(DS)와 AI 학습 & 취업 가이드
일부 교육 동영상 재생이 안됩니다
일부 교육 동영상 재생이 안됩니다.강의 커리큘럼으로 넘어가는데 동영상은 이전 교육 동영상입니다. 일부 강의 항목만 동영상 재생이 되는 것 같습니다.
-
해결됨[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
mmdetection과 opencv 사용 차이.
지금까지 진행한 inference에서 질문이 생겨 글 남깁니다!현재까지 실습에서는 inference와 결과물 시각화 과정에서 mmdetection 자체 함수를 사용하는 것과 opencv를 사용해 직접 inference 함수를 작성해 사용하는 방법 두 가지 다 사용중인데, 둘의 장단점이 무엇인지 궁금합니다!지금까지는 opencv 이용 직접 제작 함수가 좀더 유연하고 결과물을 저장하는데 용이하다는 느낌을 받기는 했으나 명확한 차이를 모르겠어 질문 남깁니다.
주간 인기글
순위 정보를
불러오고 있어요