묻고 답해요
141만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결모두를 위한 대규모 언어 모델 LLM Part 3 - 구글 제미나이(Google Gemini) API, OpenAI API와 젬마(Gemma)로 AI 어플리케이션 만들기
PDF RAG 제작 프로젝트 진행 중 답변 정확도를 올리기 위해 무엇을 해야 할지 모르겠습니다.
안녕하세요! 현재 Gemini, Streamlit, LangChain을 이용하여 오류 Q&A 모음 PDF 문서를 학습시켜 해당 문서로 질의응답을 할 수 있는 RAG Chatbot을 구현하는 중에 있습니다.PDF 내용이 정제가 되어 있지 않지만 175개의 모든 페이지를 다 읽어온 것은 확인했는데 같은 페이지에 있는 내용이더라도 답변하는 것이 있고 아닌 것이 있습니다. 또한 같은 질문을 해도 어떤 때는 잘 대답하고 어떤때는 문서에 없다고 대답하는 현상을 발견하고 있습니다... 이런 현상들의 원인이 뭔지 또한 학습시키는 문서를 정제하면 대답 정확도가 조금 올라가는지..어떤 형식으로 문서를 정제해야 할지, PDF보단 WORD나 CSV 파일이 더 정확도가 올라갈지 등등ChatBot의 정확도를 올릴려면 어떤 방식들을 시도해 봐야 하는지 감이 잡히지 않아 질문드립니다.
-
미해결모두를 위한 대규모 언어 모델 LLM Part 3 - 구글 제미나이(Google Gemini) API, OpenAI API와 젬마(Gemma)로 AI 어플리케이션 만들기
[긴급 최종질문수정16:47] 지금 이런 에러가 계속해서 연달아 나고 있는데 진행이 아예 안 됩니다
해결됐어요
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
7강 폴더 만들
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. 폴더 만드는 부분에서 directory_create('x/x')를 하게 되면 x에 어떤 이름을 넣어도 다 이미 만들어졌다고만 뜨고 실제 드라이브 들어가면 아무것도 폴더가 생성이 안되었는데, 왜 그런건지 잘 모르겠어요. 그리고 현재 디렉토리 위치 설정하는 것도 이런 오류가 발생하는데, 구글 드라이브 마운트 할 때는 잘 됐었는데 이런 오류가 발생하네요..! cd/~ 의 코드를 실행하면 현재 디렉토리를 cd/~에서 ~에 해당하는 디렉토리로 이동해주는게 아닌가요? 아래 사진은 현재 드라이브 디렉토리 경로입니다!
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part4]
test data 의 loss 계산식 문의
10_ADVANCE-EXAMPLE-MILTI-LABEL-CLASSIFICATION 과 11_MILTI-LABEL-CLASSIFICATION-DROPOUT-BATCHNORMALIZATION 강의자료에서 맨 밑부분의 테스트셋 기반 Evaluation 에서 test_loss 를 계산할 때 전체 데이터인 10000으로 나누셨는데, 왜 그러신건지 궁금해서 질문드립니다.train 과 validation 의 loss 계산은 train_batches 와 val_batches 개수(for문 도는 횟수) 만큼만 나누셨는데 test loss 를 계산할 때는 minibatch 가 아닌 전체 데이터로 나누셔서 상대적으로 test data 의 loss 값이 작아보여서요.test_loss = 0correct = 0wrong_samples, wrong_preds, actual_preds = list(), list(), list()model.eval()with torch.no_grad(): for x_minibatch, y_minibatch in test_batches: y_test_pred = model(x_minibatch.view(x_minibatch.size(0), -1)) test_loss += loss_func(y_test_pred, y_minibatch) pred = torch.argmax(y_test_pred, dim=1) correct += pred.eq(y_minibatch).sum().item() wrong_idx = pred.ne(y_minibatch).nonzero()[:, 0].numpy().tolist() for index in wrong_idx: wrong_samples.append(x_minibatch[index]) wrong_preds.append(pred[index]) actual_preds.append(y_minibatch[index]) test_loss /= len(test_batches.dataset)
-
미해결따라하면서 배우는 3D Human Pose Estimation과 실전 프로젝트
2D pose estimation model
해당 강의에서 2D pose estimation을 진행하는데, 어떤 모델을 사용하는지 알 수 있을까요 ㅎㅎ?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
tiny kitti 데이터로 MMDectection Train 실습에서 클래스 id 질문
기존에 학습된 모델을 가지고 새로운 데이터로 학습하는데, 라벨이 기존 학습된 모델의 라벨과 맞춰져야 하는 거 아닌가요? gt_labels.append(cat2label[bbox_name])에서 'Car', 'Truck', 'Pedestrian','Cyclist' 의 라벨번호가기존 학습된 모델의 'Car', 'Truck', 'Pedestrian','Cyclist'의 라벨번호와 같아야 하는 것이 아닌지 문의합니다.
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
Section14 관련 질문요청드립니다.
83쪽에 '예를 들어 (3*3) Conv.Kernel 2개를 쌓은 경우 Receptive Field는 (7*7)이 된다!'라고 하셨는데 Kernel이 쌓이는게 아니라 Layer 아닌가요?? 혹시 제가 잘못 이해하고 있었다면 지금까지 각 Layer마다 하나의 kernel만 훑고 지나가는 줄 알고 있어서 Kernel이 쌓인다 라는 개념을 잘 모르겠습니다.기존 ANN에서 Bias를 더하는 개념과 ResNet에서Residual Connection을 더하는 개념의 차이를 잘 모르겠습니다. 둘다 비슷하게 느껴집니다 ㅠㅠ.
-
미해결따라하면서 배우는 골프 자세 검출, Human Pose를 이용한 Event Detection
17:00 링크를 어디에 걸어뒀다는거에요?
4강 2번째 강의 17분 부분입니다.
-
미해결딥러닝을 활용한 자연어 처리 (NLP) 과정 (기초부터 ChatGPT/생성 모델까지)
seq2seq 모델
seq2seq 모델에 기반으로encoder-decoder, teacherforce 모델이 생긴것인가요?아니면 3개다 각각의 모델인가요?
-
미해결U-Net 구현으로 배우는 딥러닝 논문 구현 with TensorFlow 2.0 - 딥러닝 의료영상 분석
안녕하세요 train evaluate부분 질문드립니다
1.앞에 고민올리신 분대로 코드를 바꿔보니 train부분은 돌아가더라고요,5/2000번 이라서 왜그런지는 모르겟으나 너무 느리고 반쯤가다가 멈추더라고요.2.2000번 다안되서 50번으로 바꿔서 돌려보니 되더라고요(loss 값은 강의만큼 떨어지지는 않지만.. 돌아가긴하네요.) 그리고 앞에 커뮤니티 올리신 분도 비슷한 문제가 있어 https://gist.github.com/solaris33/771639041b8a4500b6d81951d4a2b814여기있는대로 evaluate구현해보니 Traceback (most recent call last):File "evaluate_isbi_2012.py", line 89, in <module>app.run(main)File "D:\anaconda\envs\tfunet\lib\site-packages\absl\app.py", line 308, in runrunmain(main, args)File "D:\anaconda\envs\tfunet\lib\site-packages\absl\app.py", line 254, in runmainsys.exit(main(argv))File "evaluate_isbi_2012.py", line 66, in mainunet_model.load_weights(FLAGS.checkpoint_path)File "D:\anaconda\envs\tfunet\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handlerraise e.with_traceback(filtered_tb) from NoneFile "D:\anaconda\envs\tfunet\lib\site-packages\tensorflow\python\training\py_checkpoint_reader.py", line 31, in error_translatorraise errors_impl.NotFoundError(None, None, error_message)tensorflow.python.framework.errors_impl.NotFoundError: Unsuccessful TensorSliceReader constructor: Failed to find any matching files for saved_model_isbi_2012/unet_model.ckpt 이런문제가 뜨더라고요..3.제가 쓰는 파이썬은 3.7.9이고 tensorflow 2.11 을 쓰고 있어요 예전버전쓰니까 이상한 문제가 있다고 train도 구현이 되질않아서요.. 가능하시면 2.11버전에 맞게 코드 변경 부탁드려요.. 몇일을 실랑이 하다가 어떻게 해야될지 몰라 올려보네요..아니면 requirement라도 넣어주시면 감사하겠습니다.
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part4]
차원 출력 관련 문의
주피터 노트북 "06_1_DNN_PYTORCH" 자료에서 등록된 parameter 의 차원을 출력해보면 최초 출력되는 파라미터가 최초 등록한 nn.Linear(input_dim, 10) // (4, 10) 이면 (4, 10) 이 출력되어야 할 것 같은데 왜 (10, 4) 가 출력될까요? x = torch.ones(4) # input tensory = torch.zeros(3) # expected outputinput_dim = x.size(0)output_dim = y.size(0)model = nn.Sequential ( nn.Linear(input_dim, 10), nn.LeakyReLU(0.1), nn.Linear(10, 10), nn.LeakyReLU(0.1), nn.Linear(10, 10), nn.LeakyReLU(0.1), nn.Linear(10, output_dim) ) loss_function = nn.MSELoss()learning_rate = 0.01nb_epochs = 1000 optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)for epoch in range(nb_epochs + 1): y_pred = model(x) loss = loss_function(y_pred, y) optimizer.zero_grad() loss.backward() optimizer.step() print(loss)for param in model.parameters(): print (param) print(param.shape)
-
미해결U-Net 구현으로 배우는 딥러닝 논문 구현 with TensorFlow 2.0 - 딥러닝 의료영상 분석
안녕하세요 train_isbi부분 문의드려요
2000/2000 [==============================] - ETA: 0s - loss: 0.2448 - accuracy: 0.9157Epoch 1: loss improved from inf to 0.24480, saving model to saved_model_isbi_2012\unet_model.h5Traceback (most recent call last):File "train_isbi_2012.py", line 180, in <module>app.run(main)File "D:\anaconda\envs\tfunet\lib\site-packages\absl\app.py", line 308, in runrunmain(main, args)File "D:\anaconda\envs\tfunet\lib\site-packages\absl\app.py", line 254, in runmainsys.exit(main(argv))File "train_isbi_2012.py", line 177, in maincallbacks=[model_checkpoint_callback, tensorboard_callback, custom_callback])File "D:\anaconda\envs\tfunet\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handlerraise e.with_traceback(filtered_tb) from NoneFile "D:\anaconda\envs\tfunet\lib\site-packages\keras\saving\legacy\save.py", line 155, in save_model"Saving the model to HDF5 format requires the model to be a "NotImplementedError: Saving the model to HDF5 format requires the model to be a Functional model or a Sequential model. It does not work for subclassed models, because such models are defined via the body of a Python method, which isn't safely serializable. Consider saving to the Tensorflow SavedModel format (by setting save_format="tf") or using save_weights.2024-05-05 07:43:59.819913: W tensorflow/core/kernels/data/generator_dataset_op.cc:108] Error occurred when finalizing GeneratorDataset iterator: FAILED_PRECONDITION: Python interpreter state is not initialized. The process may be terminated.[[{{node PyFunc}}]]이런문제가 뜨고 사진 5장도 저장안되고 save 폴더 안에도 저장되는게 없는데요 인터넷을 찾아봐도 무슨 문제인지 나오질 않아서 물어봐요 ㅜ(밑에 다른사람이 비슷한사례가 있어 바꿔보았는데 이렇게 뜨네요)2000/2000 [==============================] - ETA: 0s - loss: 0.2294 - accuracy: 0.9116Epoch 1: loss improved from inf to 0.22941, saving model to unet_model.h5Traceback (most recent call last): File "C:\Users\Administrator\Desktop\UNET-tf2-main\train_isbi_2012.py", line 180, in <module> app.run(main) File "D:\anaconda\envs\tfunet\lib\site-packages\absl\app.py", line 308, in run runmain(main, args) File "D:\anaconda\envs\tfunet\lib\site-packages\absl\app.py", line 254, in runmain sys.exit(main(argv)) File "C:\Users\Administrator\Desktop\UNET-tf2-main\train_isbi_2012.py", line 177, in main callbacks=[model_checkpoint_callback, tensorboard_callback, custom_callback]) File "D:\anaconda\envs\tfunet\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "D:\anaconda\envs\tfunet\lib\site-packages\keras\saving\legacy\save.py", line 155, in save_model "Saving the model to HDF5 format requires the model to be a "NotImplementedError: Saving the model to HDF5 format requires the model to be a Functional model or a Sequential model. It does not work for subclassed models, because such models are defined via the body of a Python method, which isn't safely serializable. Consider saving to the Tensorflow SavedModel format (by setting save_format="tf") or using save_weights.2024-05-05 14:39:03.225178: W tensorflow/core/kernels/data/generator_dataset_op.cc:108] Error occurred when finalizing GeneratorDataset iterator: FAILED_PRECONDITION: Python interpreter state is not initialized. The process may be terminated. [[{{node PyFunc}}]]Process finished with exit code 1
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
현업에서 detection 시 데이터셋의 수가 어느정도 되야하나요?
안녕하세요!좋은 강의 감사합니다 강의 내용중 69개의 이미지는 데이터셋 수가 작다고 말씀해주셨는데 현업에서 사용할만한? 모델의 이미지 데이터수는 어느정도 되는지 궁금합니다^^
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
checkpoint 파일이 안생겨요
제가 강의에 LLaMA 파인튜닝 코드를 변형해서 한 => 영 번역기를 만들고 있는데요. 몇일 전까지만 해도 zip파일을 해제하면 checkpoint-875 이런식으로 체크포인트가 저장된 파일이 생겼는데 갑자기 안생기네요.. 이유가 뭘까요 선생님!autotrain llm --train \ --project-name "conversational-finetuning" \ --model "TinyPixel/Llama-2-7B-bf16-sharded" \ --data-path "conversational-prompt" \ --text-column "text" \ --peft \ --quantization "int4" \ --lr 3e-4 \ --batch-size 8 \ --epochs 5 \ --trainer sft \ --model_max_length 80 import zipfile import shutil from google.colab import files folder_name = "conversational-finetuning" zip_file_name = "conversational-finetuning1.zip" shutil.make_archive(zip_file_name[:-4], "zip", folder_name) files.download(zip_file_name) extract_folder_name = '.' # 현재 디렉토리 with zipfile.ZipFile(zip_file_name, 'r') as zip_ref : zip_ref.extractall(extract_folder_name)
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
실무에서 Augmentation 적용 시
교수님 안녕하세요 실무에서 분류하는 과제를 하고 있습니다.(파이썬 코드를 직접 짜고 있지는 않고 상용 딥러닝 툴을 써서 하고 있습니다.) 공장안에서 여러 설비들이 조금씩 다른 세팅으로 카메라가 세팅이 되어있는 상태이고(이미 너무 많은 설비들이 있는데 이거를 지금 시점에 같은 조건으로 다 맞추기는 힘들 것 같습니다.)관리를 하려면 이 조금씩 세팅이 다른 카메라 이미지를 하나의 모델로 만들어야 한다고 판단하고 있습니다. 밝기 세팅이나 카메라 노출 회전 여부가 조금씩 다른데1) 전체 학습 이미지 데이터 셋2) 전부다 회전을 시켜버리고3) 전부다 밝기 조절을 해서 ex) 제품의 특정 위치의 이미지상 밝기가 대부분 10이고 어떤 카메라는 특이하게 15라면 가지고 있는 학습 이미지를 다 15로 바꿔버린다음에 추가 학습을 시킴 20인 카메라가 확인되면 다 20으로 바꿔버린다음에 추가 학습을 시킴 학습 데이터 셋을 2배 3배 4배 늘려버려서 학습을 시킨다면 모델의 성능이 좋아지게 될지 성능이 떨어지게 될지 어떻게 하는게 유리할지조언을 주실 수 있을까요?잘모르는 부분이어서 조금 답답한 부분이 있어서 혹시나 도움을 받을 수 있을까 해서문의드리게 되었습니다.
-
미해결TensorFlow 2.0으로 배우는 딥러닝 입문
안녕하세요 파이썬이랑 tensorflow 정확한 버전 알수있을까요?
앞에서 설치하는 동영상은 윈도우 버전이고 수업영상 구현할때는 갑자기 맥북으로 넘어가서요. 2.3으로 설치해서 코드 구현하니까 버전 문제가 생겼다 해서요 파이썬3.7.9 tensorflow 2.3버전 맞나요?File "C:\Users\Administrator\Desktop\deep-learning-tensorflow-book-code-master\Ch03-TensorFlow_Basic\3.3-linear_regression.py", line 6, in <module>W = tf.Variable(tf.random_normal(shape=[1]))AttributeError: module 'tensorflow' has no attribute 'random_normal'구현하면 이렇게 떠요
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
yolo v3 설치 과정에서 에러가 발생합니다!
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. imageio 2.31.6 requires pillow<10.1.0,>=8.3.2, but you have pillow 10.3.0 which is incompatible. 위와 같은 에러 메시지가 발생하는데 어떻게 하면 될까요?
-
미해결딥러닝을 활용한 자연어 처리 (NLP) 과정 (기초부터 ChatGPT/생성 모델까지)
강의 내용중 질문있습니다.
LSTM 함수 정의전 맨 아래와 같이 정의를하는데B같은 경우 인풋을 의미로sentences = ["hi man", "hi woman"]리스트의 값과 같이 2개를 받는다고 생각하면되나요?T 같은경우에는 time이 정확히 어떤것을 의미하는 것일까요??D 또한 feature인데 어떤것을 의미하는 지모르겠습니다..U는 아웃풋인건 이해했고요..혹시 아래 이미지와 같은 이미지를 기준으로 T값 2는hi를 h, i 로 2개 받는다는 의미일까요?D와 T는 모르겠습니다..U는 이미지 기준 4겠네요? 이부분만해결되면 코드를 더 이해할수있을것같습니다ㅜㅜB = 2 #batch size / 2개의 인풋 값이 들어가도록 설정 T = 5 #time steps D = 1 #features U = 3 #LSTM units / LSTM output 유닛 개수 X = np.random.randn(B,T,D) print(X.shape) print("\n") print(X)
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
고스트 어텐션
고스트 어텐션한국어로 말해라, 아인슈타인처럼 말해라 와 같이 모델이 일관성을 유지해야 하는 말에 대해 자꾸 몇번 더 대화를 나누면 일관성을 잃어버려서 고스트 어텐션을 적용했다고스트 어텐션은인물: 아인슈타인언어: 한국어와같이 저장하는데 이걸 이용하는 방법은 잘 모르겠다 어디서 이용되는건지 모르겠습니다.제가 생각했을때 이용될 수 있는 방법은 이런 파라미터를 이후에 오는 모든 파라미터앞에 붙인것 처럼 입력된다--> 이건 위에서 대조한 예시로 나온것 같은데 이러면 둘이 충돌이 일어날 상황이 생겨서 안한다고 한것 같고인물, 언어 와 같은 카테고리를 적용한 것을 미리 파인튜닝 해둔 후 위의 프롬프트가 나오면 그 파인튜닝 된 것을 불러온다? --> 이건 너무 경우도 많고 복잡할 것 같습니다. 선생님이 간단하다고 해서 이것도 아닌것 같습니다. 고스트 어텐션이 실제로 gpts를 이용할때 프롬프트로 저장, 고정이 되어있는 부분을 말하는것 같은데 이걸 어떻게 이용하는지 궁금합니다
-
미해결실전 인공지능으로 이어지는 딥러닝 개념 잡기
다중레이어 경사하강법에서 질문
안녕하세요 강사님Loss 함수가 아닌 y_hat부터 미분 하는 이유가 뭔가요?W_11이 Loss의 결과에 미치는 영향을 알기 위해 Loss함수 부터 미분 해야 하지 않나요?? ㅠ