묻고 답해요
141만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
하이퍼 파라미터 튜닝
안녕하세요 강사님!2유형에서 걱정되는 부분이 있어서 질문드립니다! 2유형 train_test_split 으로 검증 할 때, test_size 값 범위를 최대 몇 프로까지 제한하는게 좋을까요?랜덤포레스트 기준 하이퍼 파라미터 값들의 권장하는 최대 범위를 알고 싶습니다.(max_depth, n_estimators) 어느정도 범위까지가 괜찮을지 감이 잘 안오네요 ㅠ과적합을 고려했을 때 권장하는 범위가 있을까요? 오늘도 질문 읽어주셔서 감사합니다!
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
lightgbm 결측치, 인코딩 처리 없이 사용 가능 관련해서
학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요!질문과 관련된 영상 위치를 알려주면 더 빠르게 답변할 수 있어요먼저 유사한 질문이 있었는지 검색해보세요결측치 처리하고 인코딩 하고서 lightgbm 사용해도 문제 없을까요? 그리고 하이퍼 파라미터 전부 적용하고 verbose 써주려고 할 때 괄호 안 순서가 있나요 ?ex. (random_state=, max_depth=, n_estmators=, learning_rate=, verbose=-1)??
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
4회 2유형 질문입니다.
4회 2유형다중분류에선 xgb를 쓸수 없나요? 계속 에러가 나옵니다.
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
평가지표 이진분류
평가지표 이진분류에서 rou_auc를 사용하는 경우실제값이 문자로 주어졌을 때는 어떻게 하나요?강의자료에는roc_auc = roc_auc_score(y_true, y_pred_prob_str[:,1]) 로 작성되어 있는데, y_true_str으로 작성하지 않고, y_true로 변경해서 작성해주어야 하나요?y_true_str으로 변경하면 값이 0.47 정도로 낮아지는거 같아요.
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
2회 기출유형(작업형 2) 질문드립니다.
안녕하세요.라벨 인코딩을 진행했을 시에 X_train 데이터는 정상적으로 되는데 X_test 데이터는 아래 결과와 같이 뜨는 이유가 무엇인지 알 수 있을까요?
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
수업자료 한꺼번에 내려받기
수업 자료(노트북 빈칸, 데이터 파일) 한꺼번에 받을 수 있는 방법이 있을까요? 매 강의마다 수업노트 탭으로 바꿔서 링크 들어가서 노트북 복사하고 별도 창으로 띄운 다음 다시 강의로 돌아오는 게 무척 번거롭습니다.
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
하드코딩
정답 구할 때 이 강의에서는 하드코딩 하지 말라고 했는데 질문들 보면 작업형1 에 답 적는 곳이 있어서 코드 상관없이 눈으로 결측치 많은 컬럼 확인 후 그냥 적어줘도 된다고 하더라구요 하드코딩 하지 말라고 한 이 강의 제작하실 때는 작업형1 제출할 때 코드로 제출하는 형식이었나요?
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
6번 문제
cond=df['age'] <=0 df=df[~cond]으로 0이거나 음수인값들을 제거를 한건데 첫작성) cond = df['age'] == round(df['age'],0)수정작성) cond = df['age'] != round(df['age'],0df=df[cond]여기서 추가로 라운드로 0인값들을 제거한건가요?첫작성 수정작성 하신 이걸 하신 이유가 뭔지 잘 이해가 안됩니다. 그리고 보시면 처음부터 cond 라는 변수를수정작성까지 두번세번쓰면서 변수 내용이 계속 바뀐거 같은데 그 이유는 뭘까요 선생님~
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
작업형2 모의문제1 제출 관련 질문
학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요!질문과 관련된 영상 위치를 알려주면 더 빠르게 답변할 수 있어요먼저 유사한 질문이 있었는지 검색해보세요안녕하세요 강사님 작업형2 모의문제1 제출과 관련하여 질문드립니다. 질문 1. 평가: ROC-AUC, 정확도(Accuracy), F1, 정밀도(Precision), 재현율(Recall)을 구하시오작업형2의 경우 채점 시 코드는 보지 않고 csv 파일만 보는 것으로 알고 있는데 이 평가지표를 모두 다 구해야 하나요?학습 차원에서 넣으신 문항인지, 실제 시험에서도 채점 대상에 들어가는 문항인지 궁금합니다.질문 2.5개의 평가지표로 평가 후 마지막에 예측할 땐 predict_proba를 사용하셨는데 이유가 궁금합니다.5개의 지표 중 roc_auc_score의 수치가 가장 높아서 사용한 것인지, csv 예시에서 예측값이 확률 형태로 나와있어서 사용한 것인지 궁금합니다.또한, predict 사용 시 감점되는지도 궁금합니다. 감사합니다.
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
모델 평가 후 result 데이터 생성 시 오류
작업형 2 모음집 하는 도중 마지막 데이터 제출 데이터 파일 생성시 다음과 같은 오류가 나는데 왜 그럴까용..?[코드]#전처리 스케일링target = train.pop('total')#원핫print(train.shape, test.shape)train = pd.get_dummies(train)teset = pd.get_dummies(test)print(train.shape, test.shape)#분리from sklearn.model_selection import train_test_splitX_tr, X_val, y_tr, y_val = train_test_split(train, target, test_size = 0.2, random_state=0)print(X_tr.shape, X_val.shape, y_tr.shape, y_val.shape)#모델평가from sklearn.ensemble import RandomForestRegressorrf = RandomForestRegressor()rf.fit(X_tr,y_tr)pred = rf.predict(X_val)from sklearn.metrics import mean_squared_errordef rmse(y_true, y_pred): mse = mean_squared_error(y_true,y_pred) return mse **0.5result = rmse(y_val, pred)#테스트 제pred = rf.predict(test)submit = pd.DataFrame({'pred':pred})submit.to_csv("result.csv", index=False) [오류내역]--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-23-e536b293909d> in <cell line: 68>() 66 67 # 7. 예측 및 결과 파일 생성 ---> 68 pred = rf.predict(test) 69 submit = pd.DataFrame({'pred':pred}) 70 submit.to_csv("result.csv", index=False) 3 frames/usr/local/lib/python3.10/dist-packages/sklearn/base.py in _check_feature_names(self, X, reset) 479 ) 480 --> 481 raise ValueError(message) 482 483 def _validate_data( ValueError: The feature names should match those that were passed during fit. Feature names unseen at fit time: - branch - city - customer_type - day_name - gender - ... Feature names seen at fit time, yet now missing: - branch_A - branch_B - branch_C - city_Mandalay - city_Naypyitaw - ...
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
rmse
rms 평가 값이 작을수록 더 좋은 모델 인거 일까요~?아래와 같이 결과가 나왔는데XGBRegressor가 가장 좋은 모델 일까요???RandomForestRegressor 1320.1181960644112 lnear regression 2637.903981035919 RandomForestRegressor 1872.108397828074 max_depth=5 XGBRegressor 1269.7677864640748
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
모델 예측 후 데이터프레임 생성
array length 1333 does not match index length 2154랜덤포레스트 모델 예측 후 데이터 프레임 생성 시 상기 에러 메세지
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
탬플릿
안녕하세요 선생님 작업형2에서 이 코드를 템플릿처럼 외우고 파라미터튜닝만 조금 해서 제출하려는데 크게 무리없을까요??
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
섹션13 4회 기출문제 작업형2
학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요!질문과 관련된 영상 위치를 알려주면 더 빠르게 답변할 수 있어요먼저 유사한 질문이 있었는지 검색해보세요안녕하세요,섹션13 4회 기출문제 작업형2 관해 질문이 있습니다. 저는 object 컬럼을 LabelEncoder를 해주었는데예측값이 1,2,3,4 분류가 나오지 않고소수점이 나옵니다. 이럴때는 어떻게 해야 하는거 인가요??제 풀이가 잘못된 부분이 있나요? 이렇게 프린트를 해보면[2.22 2.566 2.57 ... 1.84516667 2.79 2.95 ] 이렇게 나옵니다.... 뭐가 잘못 되었나용?ㅠㅠ y = train['Segmentation'] train = train.drop(['ID', 'Segmentation'],axis=1) test_id = test.pop('ID') cols = ['Gender', 'Ever_Married', 'Graduated', 'Profession', 'Spending_Score', 'Var_1'] from sklearn.preprocessing import LabelEncoder for col in cols: le = LabelEncoder() train[col] = le.fit_transform(train[col]) test[col] = le.transform(test[col]) from sklearn.ensemble import RandomForestClassifier rf = RandomForestRegressor(random_state=2022) rf.fit(train, y) pred = rf.predict(test) print(pred)
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
2과목 관련 질문드립니다.
안녕하세요 2과목 관련해서 문의드리고 싶어 글을 남깁니다. 2과목은 사실상 과대적합이 걱정되어일단 널값 전처리 해주고 수치형 데이터만 뽑아 인코딩과 파라미터 없이 랜덤포레스트 돌려주고 평가하고 제출하려 하는데 라벨인코딩, 원핫인코딩, 스케일링 해주어야 더 나을까요 ?혹시나 하게 되어 과적합이 떠서 0점이 나올까 걱정이 되서 어떻게 해야할지 문의드립니다.
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
pred 구할때
왼쪽 문제에는 0,1이 나오게 했는데 왜 문제에서는 predict_proba를 통해 확률을 계산한것이에요?혹시 어쩔때 확률이고 어쩔때 0,1인지 구분방법이있나요?
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
작업형1 모의문제1-2
df['f3']=df['f3'].fillna(df['f3'].mode()) df['f3'] = df['f3'].fillna(df['f3'].mode()[0]) 위에는 제가 쓴것이고 아래는 선생님께서 쓰신 것인데 mode 를 쓸때 별말이 없다면 항상 [0] 을 써줘야하나요? 그리고 시험에서 코드에 띄어쓰기를 제대로 하지않을경우 문제가 되나요?..
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
SettingWithCopyWarning 관련 질문
기출2회 작업형 1 문제 2번 풀이 중 SettingWithCopyWarning가 같이 출력됩니다문제 2번 주어진 데이터셋(members.csv)의 앞에서부터 순서대로 80% 데이터만 활용해 'f1'컬럼 결측치를 중앙값으로 채우기 전 후의 표준편차를 구하고, 두 표준편차 차이 계산하기 (단, 표본표준편차 기준, 두 표준편차 차이는 절대값으로 계산)import pandas as pd df = pd.read_csv("members.csv") # print(df.shape) # int(len(df)*0.8) df2= df.iloc[:int(len(df)*0.8),:] # print(df2.shape) std1 = df2["f1"].std() ## 20.574853076621935 print(std1) # print(df2) # print(df2["f1"].median()) # 68.0 df2["f1"] = df2["f1"].fillna(df2["f1"].median()) std2 = df2["f1"].std() ## 17.010788646613268 print(std2) print(std1-std2) 저는 이렇게 풀었고요. 아래처럼 출력되더라고요20.574853076621935 17.010788646613268 3.564064430008667 <ipython-input-43-d0c995e0379e>:14: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df2["f1"] = df2["f1"].fillna(df2["f1"].median())정답은 풀이 내용 출력값과 일치하는데, SettingWithCopyWarning 가 나서 자꾸 신경이쓰이네요. 실제시험에서 혹시 문제가 생길 수 있을까요...?
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
기출 2 작업형 1 - 문제 1 질문입니다
문제 1 주어진 데이터셋(members.csv)의 'views' 컬럼 상위 10개 데이터를 상위 10번째 값으로 대체한 후 'age'컬럼에서 80 이상인 데이터의 'views' 컬럼 평균값 구하기 처음에는 이렇게 풀었습니다.df["views"].sort_values(ascending=False).head(10) ## 상위 10번째 값은 9690.0 t10 = df["views"].sort_values(ascending=False).iloc[9] ## 9690.0 df["views"] = df["views"].sort_values(ascending=False).reset_index(drop=True) df["views"].iloc[:10] = t10 # df.head(15) cond = df["age"] >= 80 df[cond]["views"].mean() # 4625.380952380952 로 나옴 # # <ipython-input-49-9959c4a1efa3>:13: SettingWithCopyWarning: # # A value is trying to be set on a copy of a slice from a DataFrame # # See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy # # df["views"].iloc[:10] = t10 4625.380952380952 로 나옴 두번째는 이렇게 풀었습니다df = df.sort_values(["views"], ascending= False).reset_index(drop=True) # df.head(10) top10 = df["views"].iloc[9] ## 9690.0 df["views"].iloc[:10] = top10 # df.head(11) cond = df["age"] > 80 df[cond]["views"].mean() # 5660.318181818182 로 나옴 # <ipython-input-65-22f967dbf31d>:10: SettingWithCopyWarning: # A value is trying to be set on a copy of a slice from a DataFrame # See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy # df["views"].iloc[:10] = top105660.318181818182 로 나옴그런데풀이 부분을 보니 답이 5674.04347826087 로 나오더라고요... 첫번째는 df의 "views" 칼럼 소팅해서 기존 칼럼에 대입하는 식으로 한df["views"] = df["views"].sort_values(ascending=False).reset_index(drop=True)부분이 잘못 된거 같아서 두번째 풀 때 df 전체에서 "views"칼럼 지정해서 소팅하는 아래 처럼 했고df = df.sort_values(["views"], ascending= False).reset_index(drop=True)상위 10번째 값 구했고 조건 변수 설정해서 한건데... 왜 풀이랑 결과값이 다를까요....??
-
해결됨[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)
2번
학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요!질문과 관련된 영상 위치를 알려주면 더 빠르게 답변할 수 있어요먼저 유사한 질문이 있었는지 검색해보세요idmax가 잘 안와닿아서요 ㅠㅠ이렇게 작성해도 정답처리되나요?df['교사1명당학생수'] = df['전체학생수'] / df['교사수'] df = df.sort_values('교사1명당학생수',ascending=False) print(int(df.iloc[0,1]))