묻고 답해요
141만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
해결됨실전 인공지능으로 이어지는 딥러닝 개념 잡기
경사하강법에서 다중레이어에서의 가중치를 구할 때 식이 이해가 가질 않습니다 ㅠ.ㅠ
y hat을 w11로 미분한 값을 구할 때 위 표시처럼 2가 곱해져야 하는 게 아닌가요??
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part4]
섹션 7-4 당뇨병
당뇨병 문제에서 직접 이상치 제거하는 게 손실 함수 줄이는데 도움이 될거라고 생각했는데 오히려 너무 커져버려서 왜 그런 건지 궁금합니다. 또 직접 제거하는 방식 말고 다르게 이상치 탐지하는 게 딥러닝에는 따로 있나요?
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
4-3강 cross-validation에서의 best model 선정 기준
강사님, 안녕하세요! 항상 좋은 강의 잘 보고 있습니다 :D4-3강 교차 검증(Cross-Validation)에서 best model을 어떻게 선정하는 것인지 조금 헷갈려 질문 드립니다.예를 들어, 본 강의에서는 3개 fold에 대해 cross-validation을 수행하고, 모델의 최종 성능은 <3개 fold의 validation loss의 평균>으로 계산되는 것으로 이해했는데요.1) 그렇다면 hyperparameter tuning 등을 통해 이 <평균 validation loss>가 가장 낮아지는 모델을 찾아야 하는 것이 맞나요? 다시 말해, 여러 번 cross-validation을 수행함으로써 가장 낮은 <평균 validation loss>를 가지는 모델을 best model로 선정하는 것이 맞는지 궁금합니다.2) 만약 맞다면, 앞선 강의들에서는 "epoch 마다" loss가 최소화되는지 확인하고 모델 save를 수행했었는데, 이제는 "CV를 수행할 때 마다" loss가 최소화되는지 확인하고 모델 save를 수행하면 되는 것이 맞나요?3) 마지막으로, 이미 학습된 결과를 바탕으로 best model을 선정했는데 왜 best model에 한 번 더 전체 trainset으로 학습을 진행해줘야 하는지 궁금합니다.
-
해결됨실전 인공지능으로 이어지는 딥러닝 개념 잡기
경우에 따른 최적의 활성화 함수 선정하는 방법
안녕하세요 호형 선생님. 강의 잘 들었습니다. 이번 ' 개념편 4강 활성화 함수 ' 에서 질문이 있습니다. 진행하는 업무에 따라 ( 인공 신경망의 각 층에 적용하는 ) 최적의 활성화 함수가 무엇인지는 다 다를 수 있다고 하셨는데요. 그럼 그 최적의 활성화 함수가 무엇일지 미리 연역적으로 알 수 있는 방법이 있나요?( 예를 들면 , 이 문제는 이런 특징이 있으니 , 이런 특징을 잘 나타내는 어쩌구 함수를 활성화 함수로 쓰면 되겠다 등 ) 아니면 그냥 결과적으로 모든 종류의 활성화 함수를 하나하나 대입해보며 가장 좋은 성능이 나오는 함수를 선택하는 수 밖에 없나요 ? 감사합니다.
-
해결됨처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part4]
BackPropagation 질문입니다
오차 역전파가 작동하기 위해서는 결국 마지막 layer의 가중치 (w)값을 알아야 하는 거 같은데 마지막 layer의 가중치는 어떻게 구하나요?
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part4]
RMSProp 관련 질문입니다.
안녕하세요! 섹션 9에서 AdaGrad, RMSProp 강의를 보다 궁금한 점이 생겨 질문드립니다. 제가 이해한 바로는, RMSProp은 학습이 잘 안되었음에도 t가 커질수록 $G_t$가 커지는 문제를 최대한 막는 방법이라고 이해했습니다. $G_t = \gamma G_{t-1} + (1 - \gamma)g_t^2$그런데 위 식대로라면 미분값($g_t$)이 커질때 오히려 $G_t$가 감소할수도 있을 것 같은데RMSProp은 AdaGrad와 달리 learning_rate가 커지는 쪽으로도 조절될 수 있도록 한 것인가요? 만약 맞다면 제가 알기로는 learning_rate는 t에 따라 감소하도록 하는 것이 일반적이라고 알고 있는데RMSProp에서 이렇게하면 학습에서 어떤 이점이 있는 것인지 궁금합니다.
-
해결됨처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part4]
파이토치와 비교하며 Numpy 라이브러리 사용법 익히기2 질문입니다.
약 11분 경에 행렬 곱셈을 설명하는 부분에서"앞 행렬의 행의 갯수와 뒷 행렬의 열의 갯수가 같아야 행렬간 곱셈이 가능하다"고 되어있는데 제가 알기로는 (n, k) @ (k, m) = (n, m) 이어서앞 행렬의 열의 갯수와 뒷 행렬의 행의 갯수가 같아야 행렬 곱셈이 가능하다고 알고 있습니다.제가 알고 있는게 맞을까요? 검색해봐도 설명이 이렇게 나와서 어느것이 맞는지 질문드립니다.
-
미해결[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
regression 문제에 대한 결과 시각화
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.강사님 안녕하세요. t-SNE 수업에 대하여 궁금한점이 있습니다.강의에서는 classification 문제에 대한 시각화를 알려 주셨는데요, 혹시 regression 에 대해서도 t-SNE를 적용할 수 있을지 궁금합니다. 만약 불가능 하다면, t-SNE 이외에 활용할 수 있는 다른 방법이 있을지 궁금합니다.
-
미해결[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
Loss function 관련하여 질문드립니다.
강사님 안녕하세요. test loss 및 validation loss 관련하여 질문드립니다. train loss와 validation loss 플랏을 보고, 이 모델이 잘 학습이 되었는지 어떻게 판단해야 하는지가 궁금하여 질문드리게 되었습니다.강의 코드를 활용하여 학습하고자 하는 데이터에 적용해 보았습니다. 같은 데이터여도, 모델을 어떻게 구성하는지에 따라 에폭에 따른 loss 값이 큰 차이를 보였습니다. Case 1) 초기 epoch의 validation loss가 train loss보다 낮은 경우Case 2 ) validation loss와 train loss의 차이가 큰 경우Case 3) Validation loss가 감소하는 형태를 띄나, 크게 fluctuation 할 경우Case 4) Validation loss가 크게 fluctuation하며, 감소하는 형태가 아닌 경우 (증가 -> 감소)말씀드린 4가지 case 경우 모두, 최종적으로 loss 값 자체는 낮게 나왔습니다.하지만 제가 이상적이라고 생각한 loss 곡선에는 모두 벗어나는것 같아서, 위 형태들도 학습이 잘 되었다고 판단할 수 있을지 궁금하여 질문드립니다! 감사합니다.
-
미해결[PyTorch] 쉽고 빠르게 배우는 NLP
batch size 질문이 있습니다!
안녕하세요. 좋은 강의 열어주셔서 감사합니다.batch size를 크게할 경우 학습속도가 더 빨라질것 같은데, 맞나요? batch size와 모델 성능과의 상관관계도 있을까요?
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
early stopping 코드 문의
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. if val_loss < early_stopping_loss: torch.save(resnet.state_dict(), PATH) early_stopping_train_loss = train_loss early_stopping_val_loss = val_loss early_stopping_epoch = epoch 강사님 안녕하세요.위 코드에 궁금한 점이 있어서 질문드립니다.위 코드의 4번째 줄에서 아래와 같이 early_stopping_loss 변수를 업데이트 해줘야 하는게 아닌지 궁금합니다.early_stopping_loss = val_loss지금 코드 상으로는 early_stopping_loss가 업데이트 되는 부분이 없어보여서요. 지금 코드로는 모든 epoch에서 if 문에 들어가는것이 아닐지 질문드립니다! 감사합니다.
-
미해결[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
예측 그래프
예측 그래프가 이렇게 나오는데, 뭐가 문제인지를 모르겠어요... 도와주세요...
-
해결됨실전 인공지능으로 이어지는 딥러닝 개념 잡기
전이학습 강의 중 질문이 있어서 남깁니다.
전이학습 부분에서 질문이 있습니다! 전이학습 종류는 총 네 가지로 나눌 수 있다고 하셨는데, network-base를 제외하고는 모두 Imagenet 과 같은 대용량의 데이터를 직접 받아 학습에 사용하는 것인가요?저도 지금 딥러닝 관련 분야에서 일을 하고 있는데, network-base 전이학습을 제외하고는 사용해본 적이 없어서 신기해서 여쭤봅니다!
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
데이터 불균형
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. 안녕하세요. 데이터 불균형 수업 관련하여 질문드립니다. 수업중에 알려주신 예시는 classification 문제에서의 데이터 불균형 해결 방법을 알려주셨는데요,혹시 regression 문제에서도 데이터 불균형 해결이 필요한것이 맞을까요? (예를들어 신장(키) 학습 시 평균 키를 가지는 샘플이 많은 경우) regression 문제에서 데이터 불균형이 있을 경우, 어떤 방법으로 해결할 수 있을지 궁금합니다!감사합니다.
-
미해결프로그래머를 위한 강화학습(저자 직강)
MyModel(tf.keras.Model)에 action matrix와 reward와 관련해서
training시에 필요한 action matrix와 reward를 받기위해 inputs에 dummy로 input_action_matrixs와 input_rewards를 정의하고 있는것처럼 보이는데요. 이렇게 하지않고 MyModel에 예를들면 setActionMatrixs, setRewards 이런식으로 함수를 정의하고 fit를 호출하기전에 set함수를 호출하여도 될것 같은데, 이렇게 했을때 단점이 있나요?
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
8강 전이 학습 질문
전이 학습을 하겠다는것은 이전에 학습한 weight를 이용하겠다는 의미로 알고 있는데요 맨앞에 있는 conv1을 수정하게 되면 모델 파라메터랑 weight랑 안맞지 않나요? 그리고 동결 시키지 않으면 결국 기존 weight를 무시하고 처음부터 다시 학습 할꺼같은데 해당 예제에서 어떻게 기존 weight를 활용하게 되는것인지 궁금합니다.
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
data의 gpu처리 질문
cnn에서는 다음과 같이 dataloader로 부터 얻은 data를 gpu로 변경 했습니다. seq, target = data[0].to(device),data[1].to(device),하지만 RNN에서는 다음과 같이 cpu로 처리 합니다. 이유가 무엇 인가요?? seq, target = data
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
nn.Linear(1024, 10) 관련 질문드립니다.
안녕하세요! 수업중 궁금한 부분이 있어 문의 드립니다. self.encoder = nn.Sequential( nn.Conv2d(1, k, 3, stride=2), # 흑백 이미지로 체널이 1개, 나머지는 임의로 설정 nn.ReLU(), nn.Conv2d(k, 2*k, 3, stride=2), nn.ReLU(), nn.Conv2d(2*k, 4*k, 3, stride=1), nn.ReLU(), Flatten(), nn.Linear(1024, 10), nn.ReLU() nn.Linear(1024, 10) 이 부분에서, MNIST의 경우 미리 계산하면 1024가 나온다고 말씀 주셨는데요, 어떻게 계산해야 하는건지 알 수 있을까요? 또한, 이 수치를 코드 작성자가 꼭 계산해서 넣어줘야 하는지도 궁금합니다! 크기(1024)를 코드로 출력해서 확인해 보는 방법이나, 저 부분에 1024 크기가 계산되어 들어가도록 코드를 작성할 수도 있을까요?
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
학습과 평가시 Loss 함수가 다른 이유
학습 할때는 MSE를 쓰고 평가 할때는 RMSE를 쓰는 이유가 있을까요??
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
전처리 관련해서 질문 있습니다.
Detection 모델 같은 경우에는 라벨에 좌표가 들어 있습니다.Transform을 통해서 crop이나 rotate 같은 행위를 했을때 좌표도 변경이 되어야 하는데요 이런경우에 대한 해결책도 torch가 제공을 해주나요?