미해결
[개정판] 파이썬 머신러닝 완벽 가이드
안녕하세요 선생님 질문입니다!
선생님 안녕하세요 알고리즘을 공부하고 다시 들으니 이해가 더 잘 되는 것 같습니다. 이제 막 분류에 대한 마지막까지 들었는데 제가 이해한 부분이 맞는지 모르겠습니다. 결정트리는 머신러닝의 한 방법이다.정확도를 높이기 위해서 앙상블 기법(여러가지 머신러닝을 섞거나, 데이터를 부트스트래핑 등)을 쓴다.대표적인 앙상블 기법으로는 배깅과 보팅, 부스팅이 있는데, 배깅에서는 여러가지 결정트리로 되어있는 랜덤포레스트 방식, 보팅은 서로 다른 머신러닝들로 학습하는 것, 부스팅은 약한 분류기를 순차적으로 학습하면서 전에 학습했던 특정데이터에 가중치를 두어 점차적으로 학습하는 방식스태킹은 분류된 데이터를 가지고 다시 한번 하나의 머신러닝 기법으로 학습한다. (하지만 학습에 테스트데이터를 쓰기때문에 오버피팅이 발생)이 정도로 머릿속으로 정리를 했는데 틀린 것이 있는지, 또는 보팅을 할때 다른 머신러닝 여러개와 결정트리 여러개 로 구성된 앙상블 모델도 랜덤포레스트라고 부를 수 있는지가 궁금합니다