묻고 답해요
143만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 2주차 과제] 윈도우함수 활용과 null 다루는 법
강의 문제 탐색 함수, Frame 연습 문제 (1~3)1번SELECT user_id, visit_month, LEAD(visit_month,1) OVER(PARTITION BY user_id ORDER BY visit_month) AS next_month, LEAD(visit_month,2) OVER(PARTITION BY user_id ORDER BY visit_month) AS the_month_after_next FROM `avdanced.analytics_function_01`2번SELECT user_id, visit_month, LEAD(visit_month,1) OVER(PARTITION BY user_id ORDER BY visit_month) AS next_month, LEAD(visit_month,2) OVER(PARTITION BY user_id ORDER BY visit_month) AS the_month_after_next, LAG(visit_month,1) OVER(PARTITION BY user_id ORDER BY visit_month) AS last_month FROM `avdanced.analytics_function_01` FrameSELECT -- 1번 모든 주문량 SUM(amount) OVER() AS amount_total, -- 2번 특정주문시점 누적주문량 #SUM(amount) OVER(partition by order_date) AS cumulative_sum, SUM(amount) OVER (ORDER BY order_date) AS cumulative_sum, -- 3번 고객별 주문 시점에서 누적 주문량 #SUM(amount) OVER(partition by user_id) AS cumulative_sum_by_user, SUM(amount) OVER(partition by user_id ORDER BY order_id) AS cumulative_sum_by_user, -- 4번 최근 직전 5개 평균 주문량 AVG(amount) OVER(ROWS BETWEEN 5 PRECEDING AND 1 PRECEDING) AS last_5_orders_avg_amount, AVG(amount) OVER(ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING) AS last_5_unbounded_orders_avg_amount, AVG(amount) OVER(ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS all_orders_avg_amount FROM `avdanced.orders` 윈도우함수 연습문제(1~7)1번SELECT user, team, query_date, count(user) over(PARTITION BY user) AS total_query_cnt FROM advanced.query_logs ORDER BY query_date, user2번WITH query_cnt_by_team AS ( SELECT EXTRACT(WEEK FROM query_date) AS week_number, team, user, COUNT(user) AS query_cnt FROM advanced.query_logs GROUP BY ALL ) SELECT *, RANK() OVER (PARTITION BY week_number, team ORDER BY query_cnt DESC) AS rk FROM query_cnt_by_team QUALIFY rk = 1 ORDER BY week_number, team, query_cnt DESC3번WITH query_cnt_by_team AS ( SELECT EXTRACT(WEEK FROM query_date) AS week_number, team, user, COUNT(user) AS query_cnt FROM advanced.query_logs GROUP BY ALL ) SELECT *, LAG(query_cnt, 1) OVER (PARTITION BY user ORDER BY week_number) AS prev_week_query_cnt FROM query_cnt_by_team ORDER BY user, week_number4번SELECT query_date, team, user, query_cnt, SUM(query_cnt) OVER (PARTITION BY user ORDER BY query_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_sum FROM ( SELECT query_date, team, user, COUNT(user) AS query_cnt FROM advanced.query_logs GROUP BY ALL ) ORDER BY user, query_date5번WITH raw_data AS( SELECT DATE'2024-05-01'AS date,15 AS number_of_orders UNION ALL SELECT DATE'2024-05-02', 13 UNION ALL SELECT DATE'2024-05-03', NULL UNION ALL SELECT DATE'2024-05-04', 16 UNION ALL SELECT DATE'2024-05-05', NULL UNION ALL SELECT DATE'2024-05-06', 18 UNION ALL SELECT DATE'2024-05-07', 20 UNION ALL SELECT DATE'2024-05-08', NULL UNION ALL SELECT DATE'2024-05-09', 13 UNION ALL SELECT DATE'2024-05-10', 14 UNION ALL SELECT DATE'2024-05-11', NULL UNION ALL SELECT DATE'2024-05-12', NULL ) SELECT date, IF(number_of_orders is null , last_value(number_of_orders IGNORE NULLS) OVER(ORDER BY date asc), number_of_orders) AS number_of_orders_not_null FROM raw_data;6번WITH raw_data AS( SELECT DATE'2024-05-01'AS date,15 AS number_of_orders UNION ALL SELECT DATE'2024-05-02', 13 UNION ALL SELECT DATE'2024-05-03', NULL UNION ALL SELECT DATE'2024-05-04', 16 UNION ALL SELECT DATE'2024-05-05', NULL UNION ALL SELECT DATE'2024-05-06', 18 UNION ALL SELECT DATE'2024-05-07', 20 UNION ALL SELECT DATE'2024-05-08', NULL UNION ALL SELECT DATE'2024-05-09', 13 UNION ALL SELECT DATE'2024-05-10', 14 UNION ALL SELECT DATE'2024-05-11', NULL UNION ALL SELECT DATE'2024-05-12', NULL ), filled_data AS ( SELECT * EXCEPT(number_of_orders), LAST_VALUE(number_of_orders IGNORE NULLS) OVER (ORDER BY date) AS number_of_orders FROM raw_data ) SELECT *, AVG(number_of_orders) OVER (ORDER BY date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS moving_avg FROM filled_data7번WITH base AS( SELECT event_date, event_timestamp, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime, event_name, user_id, user_pseudo_id, DATETIME(TIMESTAMP_MICROS(LAG(event_timestamp) OVER (PARTITION BY user_pseudo_id ORDER BY event_timestamp)), 'Asia/Seoul') AS before_event_datetime FROM advanced.app_logs WHERE event_date = '2022-08-18' AND user_pseudo_id = '1997494153.8491999091' ), session_info AS( SELECT *, TIMESTAMP_DIFF(event_datetime, before_event_datetime, SECOND) AS second_diff, CASE WHEN TIMESTAMP_DIFF(event_datetime, before_event_datetime, SECOND) >= 20 OR TIMESTAMP_DIFF(event_datetime, before_event_datetime, SECOND) IS NULL THEN 1 ELSE NULL END AS session_start FROM base ) SELECT *, SUM(session_start) OVER (PARTITION BY user_pseudo_id ORDER BY event_datetime) AS session_id FROM session_info ORDER BY event_date, event_timestamp;
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 2주차 과제] 윈도우 함수 연습 문제
강의 2-4: 연습 문제1user들의 다음 접속 월과 다다음 접속 월을 구하는 쿼리를 작성해주세요.SELECT *, LEAD(visit_month) OVER(PARTITION BY user_id ORDER BY visit_month) AS next_visit_month, LEAD(visit_month, 2) OVER(PARTITION BY user_id ORDER BY visit_month) AS second_next_visit_month FROM `bqmaster.advanced.analytics_function_01` ORDER BY user_id 강의 2-4: 연습 문제2user들의 다음 접속 월과 다다음 접속 월, 이전 접속 월을 구하는 쿼리를 작성해주세요.SELECT *, LEAD(visit_month) OVER(PARTITION BY user_id ORDER BY visit_month) AS next_visit_month, LEAD(visit_month, 2) OVER(PARTITION BY user_id ORDER BY visit_month) AS second_next_visit_month, LAG(visit_month) OVER(PARTITION BY user_id ORDER BY visit_month) AS previous_visit_month FROM `bqmaster.advanced.analytics_function_01` ORDER BY user_id 강의 2-4: 연습 문제3user가 접속했을 때, 다음 접속까지의 간격을 구하시오.SELECT *, LEAD(visit_month) OVER(PARTITION BY user_id ORDER BY visit_month) - visit_month AS next_visit_month_diff FROM `bqmaster.advanced.analytics_function_01` ORDER BY user_id -- 서브 쿼리 활용 SELECT user_id, visit_month, next_visit_month - visit_month AS next_visit_month_diff FROM ( SELECT *, LEAD(visit_month) OVER(PARTITION BY user_id ORDER BY visit_month) AS next_visit_month FROM `bqmaster.advanced.analytics_function_01` ) ORDER BY user_id 강의 2-4: 연습 문제4이 데이터셋을 기준으로 user_id의 첫번째 방문 월, 마지막 방문 월을 구하는 쿼리를 작성해주세요.SELECT *, FIRST_VALUE(visit_month) OVER(PARTITION BY user_id ORDER BY visit_month) AS first_visit_month, LAST_VALUE(visit_month) OVER(PARTITION BY user_id ORDER BY visit_month) AS last_visit_month FROM `bqmaster.advanced.analytics_function_01` ORDER BY user_id 강의 2-8: 연습 문제1amount_total, cumulative_sum, cumulative_sum_by_user, last_5_orders_avg_amount 컬럼 구하기SELECT *, SUM(amount) OVER() AS amount_total, SUM(amount) OVER(ORDER BY order_id) AS cumulative_sum, SUM(amount) OVER(PARTITION BY user_id ORDER BY order_id) AS cumulative_sum_by_user, AVG(amount) OVER(ORDER BY order_id ROWS BETWEEN 5 PRECEDING AND 1 PRECEDING) AS last_5_orders_avg_amount FROM `bqmaster.advanced.orders` ORDER BY order_id 강의 2-11: 연습 문제1사용자별 쿼리를 실행한 총 횟수를 구하는 쿼리를 작성해주세요. 단, GROUP BY를 사용해서 집계하는 것이 아닌, query_logs의 데이터의 우측에 새로운 컬럼을 만들어주세요.SELECT *, COUNT(user) OVER(PARTITION BY user) AS total_query_cnt FROM `bqmaster.advanced.query_logs` ORDER BY query_date 강의 2-11: 연습 문제2주차별로 팀 내에서 쿼리를 많이 실행한 수를 구한 수, 실행한 수를 활용해 랭킹을 구해주세요. 단, 랭킹이 1등인 사람만 결과가 보이도록 해주세요.SELECT *, RANK() OVER(PARTITION BY week_number, team ORDER BY query_cnt DESC) AS team_rank FROM ( SELECT EXTRACT(WEEK FROM query_date) AS week_number, team, user, COUNT(user) query_cnt FROM `bqmaster.advanced.query_logs` GROUP BY ALL ) QUALIFY team_rank = 1 ORDER BY week_number, team 강의 2-11: 연습 문제3쿼리를 실행한 시점 기준 1주 전에 쿼리 실행 수를 별도의 컬럼으로 확인할 수 있는 쿼리를 작성해주세요.SELECT *, LAG(query_count) OVER(PARTITION BY user ORDER BY week_number) AS prev_week_query_count FROM ( SELECT user, team, EXTRACT(WEEK FROM query_date) AS week_number, COUNT(user) query_count FROM `bqmaster.advanced.query_logs` GROUP BY ALL ) ORDER BY user, team 강의 2-11: 연습 문제4시간의 흐름에 따라, 일자별로 유저가 실행한 누적 쿼리 수를 작성해주세요.SELECT *, SUM(query_count) OVER(PARTITION BY user ORDER BY query_date) AS cumulative_query_count FROM ( SELECT *, COUNT(user) AS query_count FROM `bqmaster.advanced.query_logs` GROUP BY ALL ) ORDER BY user, query_date 강의 2-11: 연습 문제5다음 데이터는 주문 횟수를 나타낸 데이터입니다. 만약 주문 횟수가 없으면 NULL로 기록됩니다. 이런 데이터에서 NULL 값이라고 되어있는 부분을 바로 이전 날짜의 값으로 채워주는 쿼리를 작성해주세요.SELECT date, LAST_VALUE(number_of_orders IGNORE NULLS) OVER(ORDER BY date) AS number FROM raw_data ORDER BY date 강의 2-11: 연습 문제65번 문제에서 NULL을 채운 후, 2일 전 ~ 현재 데이터의 평균을 구하는 쿼리를 작성해주세요(이동 평균)SELECT *, AVG(number) OVER(ORDER BY date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS moving_avg FROM ( SELECT date, LAST_VALUE(number_of_orders IGNORE NULLS) OVER(ORDER BY date) AS number FROM raw_data ) ORDER BY date 강의 2-11: 연습 문제7app_logs 테이블에서 Custom Session을 만들어 주세요. 이전 이벤트 로그와 20초가 지나면 새로운 Session을 만들어 주세요. Session은 숫자로(1, 2, 3) 표시해도 됩니다.WITH base AS ( SELECT event_date, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime, event_name, user_id, user_pseudo_id FROM `bqmaster.advanced.app_logs` ), add_before_datetime AS( SELECT *, LAG(event_datetime) OVER(PARTITION BY user_pseudo_id ORDER BY event_datetime) AS before_event_datetime FROM base ), add_second_diff AS ( SELECT *, DATE_DIFF(event_datetime, before_event_datetime, SECOND) AS second_diff FROM add_before_datetime ), add_session_start AS ( SELECT *, CASE WHEN second_diff IS NULL THEN 1 WHEN second_diff >= 20 THEN 1 ELSE NULL END AS session_start FROM add_second_diff ) SELECT *, SUM(session_start) OVER(PARTITION BY user_pseudo_id ORDER BY event_datetime) AS session_id FROM add_session_start ORDER BY event_datetime
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 2주차 과제] 윈도우 함수 연습 문제
연습 문제 1데이터 테이블 : query_logs 사용자별 쿼리를 실행한 총 횟수를 구하는 쿼리를 작성해주세요. 단, group by 를 사용해서 집계하는 것이 아닌 query_logs의 데이터의 우측에 새로운 컬럼을 만들어주세요. -- 사용자별 쿼리를 실행한 총 횟수 : count() 전체 실행-- over(partition by user)select *, count(query_date) over(partition by user) as total_query_cnt from advanced.query_logs order by user, query_date 결과 연습 문제 2데이터 테이블 : query_logs주차별로 팀 내에 쿼리를 많이 실행한 수를 구한 후, 실행한 수를 활용해 랭킹을 구해주세요.단, 랭킹이 1등인 사람만 결과가 보이도록 해주세요.with query_cnt_by_team as( select extract(week from query_date) as week_number, team, user, count(user) as query_cnt from advanced.query_logs group by all) select *, rank() over(partition by week_number, team order by query_cnt desc) as rk from query_cnt_by_team -- qualify : 윈도우 함수의 조건을 설정할 때 사용한다. -- where 을 쓸 수 있지만 그럴 경우 서브쿼리를 활용해야함 qualify rk = 1 order by week_number, team, query_cnt desc -- 결과 연습 문제 3데이터 테이블 : 2번 문제에서 사용한 주차별 쿼리 사용쿼리를 실행한 시점 기준 1주 전에 쿼리 실횅수를 별도의 컬럼으로 확인할 수 있는 쿼리를 작성해주세요.with query_cnt_by_team as( select extract(week from query_date) as week_number, team, user, count(user) as query_cnt from advanced.query_logs group by all) select *, lag(query_cnt,1) over(partition by user order by week_number) as prev_week_qeury_cnt from query_cnt_by_team-- over(partition by user) 결과 연습 문제 4시간의 흐름에 따라, 일자별로 유저가 실행한 누적 쿼리 수를 작성해 주세요.--누적 쿼리 : 과거의 시간(unbounded preceding) 부터 curren row 까지 --출제 의도 : default frame에 대해 알려드리고 싶었음. select *, sum(query_cnt) over(partition by user order by query_date) as cumulative_sum, sum(query_cnt) over(partition by user order by query_date rows between unbounded preceding and current row) as cumulative_sum2 -- frame의 default 값 : unbounded preceding ~~ current row from( select query_date, team, user, count(user) as query_cnt from advanced.query_logs group by all) -- # qualify cumulative_sum != cumulative_sum2 --where, qualify 조건 설정해서 2가지 값이 모두 같은지 비교 => 모두 같으면 != 연산 결과에 반환하는 값이 없을 것 order by user, query_date 결과 연습 문제 5다음 데이터는 주문 횟수를 나타낸 데이터입니다. 만약 주문 횟수가 없으면 NULL로 기록됩니다. 이런 데이터에서 NULL 값이라고 되어있는 부분을 바로. 이전 날짜의 값으로 채워주는 쿼리를 작성해주세요. WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL )-- 윈도우 함수의 first_value, last_value 에선 기본적으로 null을 포함해서 연상 -- null을 제외하고 싶으면 ignore nulls 함수를 쓰자--ignore x select *, last_value(number_of_orders) over(order by date) as last_value_orders from raw_data결과 -- ignore 사용 select *, last_value(number_of_orders ignore nulls ) over(order by date) as last_value_orders from raw_data 결과 연습 문제 65번 문제에서 null을 채운 후, 2일 전 ~ 현재 데이터의 평균을 구하는 쿼리를 작성해주세요 (이동평균) WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ) , filled_data as( select *, last_value(number_of_orders ignore nulls ) over(order by date) as number_orders from raw_data) -- with 문을 또 쓸 수 없으니 , 로 구분해 주면 된다. select * , avg(number_of_orders) over(order by date rows between 2 preceding and current row) as moving_avg from filled_data -- frame: 2일 전 => between 2 preceding and current row 결과
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 2주차 과제] 윈도우 함수 연습 문제
CREATE OR REPLACE TABLE workspace.analytics_function_01 AS ( SELECT 1004 AS user_id, 1 AS visit_month UNION ALL SELECT 1004, 3 UNION ALL SELECT 1004, 7 UNION ALL SELECT 1004, 8 UNION ALL SELECT 2112, 3 UNION ALL SELECT 2112, 6 UNION ALL SELECT 2112, 7 UNION ALL SELECT 3912, 4 ) ; #문제1 SELECT user_id, visit_month, lead(visit_month, 1) over(partition by user_id order by visit_month asc) as next_visit, lead(visit_month, 2) over(partition by user_id order by visit_month asc) as next_next_visit FROM workspace.analytics_function_01 ORDER BY user_id, visit_month ; #문제2 SELECT user_id, visit_month, lead(visit_month, 1) over(partition by user_id order by visit_month asc) as next_visit, lead(visit_month, 2) over(partition by user_id order by visit_month asc) as next_next_visit, lag(visit_month, 1) over(partition by user_id order by visit_month asc) as prev_visit FROM workspace.analytics_function_01 ORDER BY user_id, visit_month ; #문제3 SELECT user_id, visit_month, lead(visit_month, 1) over(partition by user_id order by visit_month asc) as next_visit_month, lead(visit_month, 1) over(partition by user_id order by visit_month asc) - visit_month as next_visit_month_diff FROM workspace.analytics_function_01 ORDER BY user_id, visit_month ; #추가문제 SELECT DISTINCT user_id, first_value(visit_month) over(partition by user_id order by visit_month asc rows between unbounded preceding and unbounded following) as first_visit_month, last_value(visit_month) over(partition by user_id order by visit_month asc rows between unbounded preceding and unbounded following) as last_visit_month FROM workspace.analytics_function_01 ORDER BY user_id ; #문제4 SELECT *, sum(amount) over() as total_amount, sum(amount) over(order by order_id asc rows between unbounded preceding and current row) as cumulative_sum, sum(amount) over(partition by user_id order by order_id asc rows between unbounded preceding and current row) as cumulative_sum_by_user, avg(amount) over(order by order_id asc rows between 5 preceding and 1 preceding) as last_five_orders_avg_amount FROM workspace.orders ORDER BY order_id ; #연습문제1 SELECT *, count(*) over(partition by user) as query_count_by_users FROM workspace.query_logs ; #연습문제2 SELECT query_weeknum, team, user, query_count, rank() over(partition by query_weeknum, team order by query_count desc) as query_rank FROM ( SELECT extract(week from query_date) as query_weeknum, team, user, count(1) as query_count FROM workspace.query_logs GROUP BY ALL ) QUALIFY query_rank = 1 ORDER BY query_weeknum ; #연습문제3 SELECT team, user, query_weeknum, query_count, lag(query_count, 1) over(partition by team, user order by query_weeknum asc) as prev_week_query_count FROM ( SELECT team, user, extract(week from query_date) as query_weeknum, count(1) as query_count FROM workspace.query_logs GROUP BY ALL ) #연습문제4 SELECT team, user, query_date, query_count, sum(query_count) over(partition by team, user order by query_date asc rows between unbounded preceding and current row) as cumulative_sum FROM ( SELECT team, user, query_date, count(1) as query_count FROM workspace.query_logs GROUP BY ALL ) ORDER BY team, user, query_date ; #연습문제5 WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ) SELECT date, ifnull(number_of_orders, real_prev_number_of_orders) as number_of_orders FROM ( SELECT date, number_of_orders, last_value(number_of_orders ignore nulls) over(order by date asc rows between unbounded preceding and 1 preceding) as real_prev_number_of_orders FROM raw_data ) ORDER BY date asc ; #연습문제6 WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ) SELECT date, number_of_orders, avg(number_of_orders) over(order by date asc rows between 2 preceding and current row) as moving_avg FROM ( SELECT date, ifnull(number_of_orders, real_prev_number_of_orders) as number_of_orders FROM ( SELECT date, number_of_orders, last_value(number_of_orders ignore nulls) over(order by date asc rows between unbounded preceding and 1 preceding) as real_prev_number_of_orders FROM raw_data ) ) ORDER BY date asc ; #연습문제7 WITH total_logs AS ( SELECT user_pseudo_id, event_name, timestamp_micros(event_timestamp) as event_datetime FROM workspace.app_logs ) SELECT user_pseudo_id, event_name, event_datetime, prev_event_datetime, second_diff, sum(session_change) over(partition by user_pseudo_id order by event_datetime asc) as session_id FROM ( SELECT *, case when event_datetime = first_event_datetime then 1 end as session_id, case when second_diff is null or second_diff >= 20 then 1 else 0 end as session_change FROM ( SELECT *, datetime_diff(event_datetime, prev_event_datetime, second) as second_diff FROM ( SELECT user_pseudo_id, event_name, event_datetime, lag(event_datetime, 1) over(partition by user_pseudo_id order by event_datetime asc) as prev_event_datetime, first_value(event_datetime) over(partition by user_pseudo_id order by event_datetime asc) as first_event_datetime FROM total_logs ) ) ) ORDER BY user_pseudo_id, event_datetime ;
-
미해결[왕초보편] 앱 8개를 만들면서 배우는 안드로이드 코틀린(Android Kotlin)
이 오류는 어떻게 해결하나요??
이게 오류 내용이고이게 MainActivity 코드 부분입니다
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 2주차 과제] 윈도우 함수 탐색 함수 연습 문제/ 윈도우 함수 FRAME 연습 문제/ 윈도우 함수 총정리 연습 문제
1. 탐색 함수 연습 문제# 1. user들의 다음 접속 월과 다다음 접속 월을 구하는 쿼리를 작성해주세요. # 쿼리를 작성하는 목표, 확인할 지표: user_id의 다음/다다음 visit_month 출력 # 쿼리 계산 방법: LEAD # 데이터의 기간: X # 사용할 테이블: advanced.analytics_function_01 # JOIN KEY: X # 데이터 특징: X SELECT user_id, visit_month, LEAD(visit_month, 1) OVER (PARTITION BY user_id ORDER BY visit_month) AS after_visit_month, LEAD(visit_month, 2) OVER (PARTITION BY user_id ORDER BY visit_month) AS after_two_visit_month, FROM advanced.analytics_function_01 ORDER BY user_id# 2. user들의 다음 접속 월과 다다음 접속 월, 이전 접속 월을 구하는 쿼리를 작성해주세요. # 쿼리를 작성하는 목표, 확인할 지표: user_id의 다음/다다음 visit_month 출력 # 쿼리 계산 방법: LEAD # 데이터의 기간: X # 사용할 테이블: advanced.analytics_function_01 # JOIN KEY: X # 데이터 특징: X SELECT user_id, visit_month, LEAD(visit_month, 1) OVER (PARTITION BY user_id ORDER BY visit_month) AS after_visit_month, LEAD(visit_month, 2) OVER (PARTITION BY user_id ORDER BY visit_month) AS after_two_visit_month, LAG(visit_month) OVER (PARTITION BY user_id ORDER BY visit_month) AS before_visit_month FROM advanced.analytics_function_01 ORDER BY user_id# 3. 유저가 접속했을 때, 다음 접속까지의 간격을 구하시오. SELECT *, (after_visit_month - visit_month) AS interval_of_after_visit_month FROM ( SELECT *, LEAD(visit_month) OVER (PARTITION BY user_id ORDER BY visit_month) AS after_visit_month, FROM advanced.analytics_function_01 ORDER BY user_id, visit_month )# 4. 유저의 첫번째 방문 월, 마지막 방문 월을 구하는 쿼리를 작성해주세요. SELECT *, FIRST_VALUE(visit_month) OVER (PARTITION BY user_id ORDER BY visit_month) AS first_visit_month, LAST_VALUE(visit_month) OVER (PARTITION BY user_id ORDER BY visit_month) AS last_visit_month FROM advanced.analytics_function_01 ORDER BY user_id, visit_month 2. FRAME 연습 문제# Frame 연습 문제: 총 수량(amount_total), 수량의 누적 합(cumulativ_sum), 유저별 수량의 누적 합(cumulative_sum(user)), 최근 5개 수량의 평균(last_5_avg) 출력 # 쿼리를 작성하는 목표, 확인할 지표: 수량의 총합 또는 누적 합 구하기 # 쿼리 계산 방법: 윈도우 함수 - AVG, SUM # 데이터의 기간: X # 사용할 테이블: advanced.orders # JOIN KEY: X # 데이터 특징: X SELECT *, SUM(amount) OVER (ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS amount_total, SUM(amount) OVER (ORDER BY order_date, order_id ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_sum, SUM(amount) OVER (PARTITION BY user_id ORDER BY order_date, order_id ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_sum_user, AVG(amount) OVER (ORDER BY order_date, order_id ROWS BETWEEN 5 PRECEDING AND 1 PRECEDING) AS last_5_avg FROM advanced.orders ORDER BY order_id 3. 총정리 연습 문제# 1. 사용자별 쿼리를 실행한 총 횟수를 구하는 쿼리를 작성해주세요. 우측에 새로운 컬럼을 만들어주세요. # 쿼리를 작성하는 목표, 확인할 지표: 유저별 쿼리 실행 총 횟수 # 쿼리 계산 방법: 윈도우 함수 COUNT # 데이터의 기간: X # 사용할 테이블: advanced.query_logs # JOIN KEY: X # 데이터 특징: X SELECT *, COUNT(user) OVER (PARTITION BY user) AS total_query_cnt FROM advanced.query_logs ORDER BY query_date, user# 2. 주차별로 팀 내에서 쿼리를 많이 실행한 수를 구한 후, 실행한 수를 활용해 랭킹을 구해주세요. 단, 랭킹이 1등인 사람만 결곽가 보이도록 해주세요. # 쿼리를 작성하는 목표, 확인할 지표: 주차별 쿼리 실행 수 랭킹, 팀 내 1등인 사람만 출력 # 쿼리 계산 방법: 윈도우 함수 COUNT, RANK # 데이터의 기간: X # 사용할 테이블: advanced.query_logs # JOIN KEY: X # 데이터 특징: X WITH create_week_number AS ( SELECT CASE WHEN query_date BETWEEN '2024-04-24' AND '2024-04-26' THEN 16 ELSE 17 END AS week_number, team, user FROM advanced.query_logs ), create_query_cnt AS ( SELECT *, COUNT(user) OVER(PARTITION BY week_number, user) AS query_cnt FROM create_week_number ) SELECT DISTINCT *, RANK() OVER (PARTITION BY week_number, team ORDER BY query_cnt DESC) AS team_rank FROM create_query_cnt QUALIFY team_rank = 1 ORDER BY week_number, team# 3. (2번 문제에서 사용한 주차별 쿼리 사용) 쿼리를 실행한 시점 기준 1주 전에 쿼리 실행 수를 별도의 컬럼으로 확인할 수 있는 쿼리를 작성해주세요. # 쿼리를 작성하는 목표, 확인할 지표: 주차별 쿼리 실행 수, 1주 전 쿼리 실행 수 출력 # 쿼리 계산 방법: 윈도우 함수 COUNT # 데이터의 기간: X # 사용할 테이블: advanced.query_logs # JOIN KEY: X # 데이터 특징: X WITH create_week_number AS ( SELECT user, team, CASE WHEN query_date BETWEEN '2024-04-24' AND '2024-04-26' THEN 16 ELSE 17 END AS week_number FROM advanced.query_logs ), create_query_cnt AS ( SELECT DISTINCT *, COUNT(user) OVER(PARTITION BY week_number, user) AS query_cnt FROM create_week_number ) SELECT *, LAG(query_cnt) OVER (PARTITION BY user ORDER BY week_number) AS prev_week_query_cnt FROM create_query_cnt ORDER BY user, week_number# 4. 시간의 흐름에 따라, 일자별로 유저가 실행한 누적 쿼리 수를 작성해주세요. # 쿼리를 작성하는 목표, 확인할 지표: 유저별 누적 쿼리 수 시간순 출력 # 쿼리 계산 방법: 윈도우 함수 COUNT, SUM # 데이터의 기간: X # 사용할 테이블: advanced.query_logs # JOIN KEY: X # 데이터 특징: X WITH create_query_cnt AS ( SELECT DISTINCT *, COUNT(user) OVER (PARTITION BY user, query_date ORDER BY user, query_date) AS query_cnt FROM advanced.query_logs ) SELECT *, SUM(query_cnt) OVER (PARTITION BY user ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_query_cnt FROM create_query_cnt ORDER BY user, query_date# 5. 다음 데이터는 주문 횟수를 나타낸 데이터입니다. 만약 주문 횟수가 없으면 NULL로 기록됩니다. 이런 데이터에서 NULL 값이라고 되어있는 부분을 바로 이전 날짜의 값으로 채워주는 쿼리를 작성해주세요. # 쿼리를 작성하는 목표, 확인할 지표: NULL로 작성된 주문 횟수를 이전 날짜의 값으로 출력 # 쿼리 계산 방법: 윈도우 함수 LAG # 데이터의 기간: X # 사용할 테이블: 쿼리에서 새로 만든 raw_data # JOIN KEY: X # 데이터 특징: 일자별(date) 주문횟수(number_of_orders)를 나타냄 WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ) SELECT date, IF (number_of_orders IS NULL, LAG(number_of_orders) OVER (ORDER BY date), number_of_orders) AS number_of_orders FROM raw_data ORDER BY date# 6. 5번 문제에서 NULL을 채운 후, 2일 전 ~ 현재 데이터의 평균을 구하는 쿼리를 작성해주세요.(이동 평균) # 쿼리를 작성하는 목표, 확인할 지표: 2일 전부터 현재까지의 number_of_orders의 평균 값 출력 # 쿼리 계산 방법: 윈도우 함수 AVG # 데이터의 기간: X # 사용할 테이블: 쿼리에서 새로 만든 raw_data # JOIN KEY: X # 데이터 특징: X WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ), fill_null AS ( SELECT date, IF (number_of_orders IS NULL, LAG(number_of_orders) OVER (ORDER BY date), number_of_orders) AS number_of_orders FROM raw_data ORDER BY date ) SELECT *, AVG(number_of_orders) OVER (ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS moving_avg FROM fill_null# 7. app_logs 테이블에서 Custom Session을 만들어 주세요. 이전 이벤트 로그와 20초가 지나면 새로운 Session을 만들어 주세요. Session은 숫자로 (1, 2, 3 …) 표시해도 됩니다. 2022-08-18일의 user_pseudo_id(1997494153.8491999091)은 session_id가 4까지 나옵니다. # 쿼리를 작성하는 목표, 확인할 지표: event_date, event_timestamp, event_name, user_id, user_pseudo_id 추출 => event_datetime, before_event_datetime, second_diff, session_start, session_id 생성 # 쿼리 계산 방법: 윈도우 함수 LAG (before_event_datetime 생성 시), # 데이터의 기간: X # 사용할 테이블: advanced.app_logs # JOIN KEY: X # 데이터 특징: X WITH create_event_datetime AS ( SELECT event_date, event_timestamp, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime, event_name, user_id, user_pseudo_id FROM advanced.app_logs ), create_before_event_datetime AS ( SELECT *, LAG(event_datetime) OVER (PARTITION BY user_pseudo_id ORDER BY event_datetime) AS before_event_datetime FROM create_event_datetime ), create_second_diff AS ( SELECT *, DATETIME_DIFF(event_datetime, before_event_datetime, second) AS second_diff FROM create_before_event_datetime ), create_session_start AS ( SELECT *, IF ((second_diff IS NULL) OR (second_diff >= 20), 1, 0) AS session_start FROM create_second_diff ) SELECT * EXCEPT(session_start), IF (session_start = 0, NULL, session_start) AS session_start, SUM(session_start) OVER (PARTITION BY user_pseudo_id, event_date ORDER BY event_datetime ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS session_id FROM create_session_start ORDER BY user_pseudo_id, event_timestamp
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[인프런 빅쿼리 빠짝스터디 2주차] 윈도우함수 연습문제
1. 윈도우 함수 연습문제 1번/* 1. 사용자별 쿼리를 실행한 횟수의 총합을 보여주는 쿼리를 작성하세요 단, GROUP BY를 통해 집계하는게 아니라 우측에 새로운 칼럼으로 만들어주세요 */ select user, team, query_date, count(query_date) over (partition by user) as total_query_cnt from `advanced.query_logs` order by user,query_date;2. 윈도우 함수 연습문제 2번/* 2. 주차별로 팀내에서 쿼리를 많이 실행한 수를 구한 후, 실행한 수를 활용해 랭킹을 구해주세요. 단, 팀별로 랭킹이 1위인 사람만 보여주세요 */ -- 풀이1: 서브쿼리 사용 with base as ( select extract(week from query_date) as week_number, user, team, count(query_date) as total_query_cnt from `advanced.query_logs` group by week_number, user, team ) select week_number, team, user, total_query_cnt, ranking_in_team from ( select week_number, team, user, total_query_cnt, rank() over (partition by team order by total_query_cnt desc) as ranking_in_team from base ) where ranking_in_team = 1 order by week_number, team; -- 풀이2: QUALIFY 사용 with base as ( select extract(week from query_date) as week_number, user, team, count(query_date) as total_query_cnt from `advanced.query_logs` group by week_number, user, team ) select week_number, team, user, total_query_cnt, rank() over (partition by team order by total_query_cnt desc) as ranking_in_team from base qualify ranking_in_team = 1 order by week_number, team; 3. 윈도우 함수 연습문제 3번 /* 3. (2번 문제에서 사용한 주차별 쿼리 사용) 쿼리를 실행한 시점 1주 전에 쿼리를 실행한 횟수를 별도의 칼럼으로 확인할 수 있는 쿼리를 짜주세요 */ with base as ( select extract(week from query_date) as week_number, user, team, count(query_date) as query_cnt from `advanced.query_logs` group by week_number, user, team ) select user, team, week_number, query_cnt, lag(query_cnt) over (partition by user order by week_number) as prev_week_query_cnt from base order by user, week_number;4. 윈도우 함수 연습문제 4번 /* 4. 시간의 흐름별로(일자별로) 유저가 쿼리한 횟수의 누적합을 구하세요 */ select user, team, query_date, query_count, -- 윈도우함수의 FRAME의 DEFAULT값이 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW임 sum(query_count) over (partition by user order by query_date rows between unbounded preceding and current row) as cumulative_query_count from ( select user, team, query_date, count(query_date) as query_count from `advanced.query_logs` group by 1,2,3 ) order by user,query_date; 5. 윈도우 함수 연습문제 5번/* 5. 다음 데이터는 주문 횟수를 나타낸 테이블입니다. 만약 주문 데이터가 없으면 NULL로 기록됩니다. 이런 데이터에서 NULL값을 바로 전날의 데이터로 채워주는 쿼리를 작성하세요. */ WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ) select date, last_value(number_of_orders ignore nulls) over (order by date) as number_of_orders from raw_data; -- 기본적으로 FIRST_VALUE, LAST_VALUE 연산시에 NULL도 포함하여 출력하지만 -- IGNORE NULLS를 사용하면 NULL 제외한 값으로 출력됨 6. 윈도우 함수 연습문제 6번 /* 6. 5번 문제에서 NULL을 채운 후, 2일 전 ~ 현재 데이터의 평균을 구하는 쿼리를 작성해주세요 */ WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ) select date, number_of_orders, avg(number_of_orders) over (order by date rows between 2 preceding and current row) as moving_avg from ( select date, last_value(number_of_orders ignore nulls) over (order by date) as number_of_orders from raw_data )7. 윈도우 함수 연습문제 7번/* app_logs 테이블에서 커스텀세션을 만들어주세요. 이전 이벤트로그와 20초 이상 차이가 나면 새로운 세션을 만들어주세요. 세션은 숫자로(1,2,3...) 표시해도 됩니다. */ with base as ( select event_date, event_timestamp, datetime(timestamp_micros(event_timestamp),'Asia/Seoul') as event_datetime, event_name, user_id, user_pseudo_id, lag(datetime(timestamp_micros(event_timestamp),'Asia/Seoul')) over (partition by user_pseudo_id order by event_timestamp) as before_event_datetime from advanced.app_logs where event_date = '2022-08-18' ) select *, datetime_diff(event_datetime,before_event_datetime, second) as second_diff, case when datetime_diff(event_datetime,before_event_datetime, second) is null or datetime_diff(event_datetime,before_event_datetime, second) >= 20 then 1 else 0 end as session_start, sum(case when datetime_diff(event_datetime,before_event_datetime, second) >= 20 then 1 else 0 end) over (partition by user_pseudo_id order by event_datetime) + 1 as session_temp from base
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 2주차 과제] 윈도우 함수(연습문제) - 탐색함수 / Frame / 총정리
탐색함수 연습문제문제 1. user들의 다음 접속 월과 다다음 접속 월을 구하는 쿼리를 작성해주세요.SELECT *, LEAD(visit_month) OVER(PARTITION BY user_id ORDER BY visit_month) AS next_visit_month, LEAD(visit_month, 2) OVER (PARTITION BY user_id ORDER BY visit_month) AS nnext_visit_month FROM advanced.analytics_function_01 LEAD가 다음!!!! 은근 헷갈린다 정말. L, E, A, D. D로 끝나니까 다음이라고 생각해야겠다.문제2. user들의 다음 접속 월과 다다음 접속 월, 이전 접속 월을 구하는 쿼리를 작성해주세요.SELECT *, LEAD(visit_month) OVER(PARTITION BY user_id ORDER BY visit_month) AS next_visit_month, LEAD(visit_month, 2) OVER (PARTITION BY user_id ORDER BY visit_month) AS nnext_visit_month, LAG(visit_month) OVER(PARTITION BY user_id ORDER BY visit_month) AS previous_visit_month FROM advanced.analytics_function_01 LAG함수를 쓴 컬럼에서 NULL이 나온다? → 아 이 row가 처음이다.LEAD 함수를 쓴 컬럼에서 NULL이 나온다? → 아 이 row가 마지막이다.문제3. 유저가 접속했을 때, 다음 접속까지의 간격을 구하시오.#답 x, after_visit_month에서 에러남 SELECT *, LEAD(visit_month, 1) OVER (PARTITION BY user_id ORDER BY visit_month) AS after_visit_month, after_visit_month - visit_month FROM advanced.analytics_function_01 →SELECT 절은 가장 마지막에 실행되기 때문에 LEAD함수를 실행하면서 after_visit_month라 이름 붙인 것이다. 따라서 아직 SELECT 절에서 after_visit_month라는 것을 인식하지 못한다.#물론 쿼리가 짧을 때에는 이것도 가능. #하지만 이러한 쿼리가 굉장히 많아지면 복잡해지고, 실수하기 좋다. #중복된 쿼리는 줄이는 것이 좋다. SELECT *, LEAD(visit_month, 1) OVER (PARTITION BY user_id ORDER BY visit_month) - visit_month AS diff_visit_month, FROM advanced.analytics_function_01 → 윈도우 함수를 이렇게 쓰는 것이 좋을까? 중복된 쿼리는 줄이는 것이 좋다.→ 서브쿼리 사용하는 것이 더 낫다. 서브쿼리나 WITH문과 같은 CTE에서는 윈도우함수를 여러 개 쓰더라도 같은 정렬기준과 파티션 기준을 갖는다면 한 번의 데이터 스캔을 거친다.→ 쿼리문 수정시에도 좋다. 만약 쿼리를 수정해야할 때 서브쿼리 내의 쿼리문만 수정하면 되기 때문이다.SELECT *, after_visit_month - visit_month AS diff FROM ( SELECT *, LEAD(visit_month, 1) OVER (PARTITION BY user_id ORDER BY visit_month) AS after_visit_month, FROM advanced.analytics_function_01 ) 문제 4. 이 데이터셋을 기준으로 user_id의 첫번째 접근 월을 구하는 쿼리를 작성해주세요.SELECT *, FIRST_VALUE(visit_month) OVER(PARTITION BY user_id ORDER BY visit_month) AS first_month LAST_VALUE(visit_month) OVER(PARTITION BY user_id ORDER BY visit_month) AS last_month FROM advanced.analytics_function_01 Frame 연습문제문제 1. 우리 회사의 모든 주문량은?SELECT *, SUM(amount) OVER (ORDER BY order_date, order_id #OVER 안에 아무것도 안 들어가도 됨 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS amount_total FROM advanced.orders 문제 2. 특정 주문 시점에서 누적 주문량은?SELECT *, SUM(amount) OVER (ORDER BY order_date, order_id) AS cumulative_sum FROM advanced.orders 문제 3. 고객별 주문 시점에서 누적 주문량은?SELECT *, SUM(amount) OVER (PARTITION BY user_id ORDER BY order_date, order_id ) AS cumulative_sum_by_user 문제 4. 최근 직전 5개의 평균 주문량은?SELECT *, AVG(amount) OVER (ORDER BY order_date, order_id ROWS BETWEEN 5 PRECEDING AND 1 PRECEDING) AS last_5_orders_avg_amout 총정리 연습문제문제 1. 사용자별 쿼리를 실행한 총 횟수를 구하는 쿼리를 작성해주세요. 단, GROUP BY를 사용해서 집계하는 것이 아닌 query_logs의 데이터의 우측에 새로운 컬럼을 만들어주세요SELECT *, COUNT(query_date) OVER (PARTITION BY user ORDER BY user) AS total_query_cnt FROM advanced.query_logs 문제 2. 주차별로 팀 내에서 쿼리를 많이 실행한 수를 구한 후, 실행한 수를 활용해 랭킹을 구해주세요. 단, 랭킹이 1등인 사람만 결과가 보이도록 해주세요.WITH table AS ( SELECT EXTRACT(WEEK FROM query_date) AS week_number, team, user, COUNT(user) AS query_cnt FROM advanced.query_logs GROUP BY ALL ) SELECT *, RANK() OVER(PARTITION BY week_number ORDER BY query_cnt) AS team_rank FROM table QUALIFY team_rank = 1문제 3. (2번 문제에서 사용한 주차별 쿼리 사용) 쿼리를 실행한 시점 기준 1주 전에 쿼리 실행 수를 별도의 컬럼으로 확인할 수 있는 쿼리를 작성해주세요.WITH table AS ( SELECT EXTRACT(WEEK FROM query_date) AS week_number, team, user, COUNT(user) AS query_cnt FROM advanced.query_logs GROUP BY ALL ) SELECT *, LAG(query_cnt) OVER (PARTITION BY user ORDER BY week_number) AS prev_week_query_cnt FROM table LAG(어떤 이전 값이 들어가야 하는지 = 1주 전 쿼리실행수)PARTITION BY로 쓸 기준은 user : 왜냐면 user 단위로 1주 전 쿼리실행수를 가져오기 때문ORDER BY로 쓸 기준은 week_number : 1주 전 쿼리이기 때문에 날짜 관련으로 정렬문제 4. 시간의 흐름에 따라 일자별로 유저가 실행한 누적 쿼리 수를 작성해주세요.WITH query_count_table AS ( SELECT *, COUNT(*) AS query_count FROM advanced.query_logs GROUP BY ALL ) SELECT *, SUM(query_count) OVER (PARTITION BY user ORDER BY query_date) AS cululative_query_count FROM query_count_table 처음에는 PARTITION BY에 query_date도 같이 넣었다가 결과가 날짜를 기준으로 구분되고 있는 것이 보여서 아차 하고 query_date를 뺐더니 정답이 되었다…..자꾸 문제에서 말하는 “일자 별로” 와 같은 말 때문에 PARTITION BY에 어떤 컬럼이 와야 하는지 헷갈리는 것 같다.문제 5. 다음 데이터는 주문 횟수를 나타낸 데이터입니다. 만약 주문 횟수가 없으면 NULL로 기록됩니다 이런 데이터에서 NULL값이라고 되어 있는 부분을 바로 이전 날짜의 값으로 채워주는 쿼리를 작성해주세요.WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07' , 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL UNION ALL ) SELECT *, LAST_VALUE(number_of_order IGNORE NULLS) OVER (ORDER BY date) AS last_value_orders FROM raw_dataLAST_VALUE()는 원래 NULL을 포함해서 연산하기 때문에 위에서 그냥 쓰면 NULL이 마지막 값으로 인정돼서 들어오지만, IGNORE NULLS를 사용하면 NULL값은 제외하고 값이 있는 것만 마지막값으로 생각하고 가져오기 때문에 쓰는 것. 문제 6. 5번 문제에서 NULL을 채운 후, 2일전 ~ 현재 데이터의 평균을 구하는 쿼리를 작성해주세요(이동평균)WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07' , 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ), filled_data AS ( SELECT * EXCEPT(number_of_orders), **LAST_VALUE**(number_of_orders **IGNORE NULLS**) OVER (ORDER BY date) AS number_of_orders FROM raw_data ) SELECT *, AVG(number_of_orders) OVER (ORDER BY date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS moving_avg FROM filled_data 문제 7. app_logs 테이블에서 custom session을 만들어주세요. 이전 이벤트 로그와 20초가 지나면 새로운 session을 만들어주세요. session은 숫자로 (1, 2, 3 …) 표시해도 됩니다.2022-08-18일의 user_pseudo_id(1997494153.8491999091)은 session_id가 4까지 나옵니다.WITH base AS( SELECT event_date, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime, event_name, user_id, user_pseudo_id FROM advanced.app_logs WHERE event_date = '2022-08-18' AND user_pseudo_id = "1997494153.8491999091" ), diff_data AS( SELECT *, #이전 이벤트 시간과 현재 이벤트시간의 간격을 SECOND 초단위로 구하기 / second_diff를 기반으로 새로운 세션의 시작일지 아닐지 판단 DATETIME_DIFF(event_datetime, prev_event_datetime, SECOND) AS second_diff FROM ( SELECT *, # 직전 이벤트 시간을 prev_event_datetime으로 만들기 LAG(event_datetime, 1) OVER(PARTITION BY user_pseudo_id ORDER BY event_datetime) AS prev_event_datetime FROM base ) ) SELECT *, SUM(session_start) OVER(PARTITION BY user_pseudo_id ORDER BY event_datetime) AS session_num FROM( SELECT *, CASE WHEN prev_event_datetime IS NULL THEN 1 WHEN second_diff >= 20 THEN 1 ELSE NULL END AS session_start FROM diff_data ) ORDER BY event_datetime
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[인프런 빅쿼리 빠짝스터디 2주차] 윈도우 함수, FRAME 설정, QUALIFY
<윈도우 함수>연습문제 1SELECT user_id, visit_month, LEAD(visit_month, 1) OVER(PARTITION BY user_id ORDER BY visit_month) as next_visit_month, LEAD(visit_month, 2) OVER(PARTITION BY user_id ORDER BY visit_month) as two_next_visit_month, FROM advanced.analytics_function_01 ORDER BY user_id연습문제 2SELECT user_id, visit_month, LAG(visit_month, 1) OVER(PARTITION BY user_id ORDER BY visit_month) as prev_visit_month, LEAD(visit_month, 1) OVER(PARTITION BY user_id ORDER BY visit_month) as next_visit_month, LEAD(visit_month, 2) OVER(PARTITION BY user_id ORDER BY visit_month) as two_next_visit_month, FROM advanced.analytics_function_01 ORDER BY user_id추가문제 - 유저의 첫번째 방문월과 마지막 방문월 구하기SELECT user_id, visit_month, FIRST_VALUE(visit_month) OVER(PARTITION BY user_id ORDER BY visit_month) as first_visit_month, LAST_VALUE(visit_month) OVER(PARTITION BY user_id ORDER BY visit_month) as last_visit_month, FROM advanced.analytics_function_01 ORDER BY user_id<FRAME 설정>advanced.order 문제SELECT *, SUM(amount) OVER() as amount_total, SUM(amount) OVER(ORDER BY order_id) as cumulative_sum, SUM(amount) OVER(PARTITION BY user_id ORDER BY order_id ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as cumulative_sum_by_user, AVG(amount) OVER(ORDER BY order_id ROWS BETWEEN 5 PRECEDING AND 1 PRECEDING) as last_5_orders_avg_amount, FROM advanced.orders ORDER BY order_id, user_id<연습문제>연습문제 1SELECT *, COUNT(*) OVER(PARTITION BY user) as total_query_cnt FROM advanced.query_logs ORDER BY user연습문제 2WITH base as ( SELECT EXTRACT(WEEK FROM query_date) as week_number, team, user, COUNT(user) as query_cnt FROM advanced.query_logs GROUP BY ALL ) SELECT *, RANK() OVER(PARTITION BY week_number, team ORDER BY query_cnt DESC) as team_rank FROM base QUALIFY team_rank=1 ORDER BY week_number연습문제 3WITH base as ( SELECT user, team, EXTRACT(WEEK FROM query_date) as week_number, COUNT(user) as query_cnt, FROM advanced.query_logs GROUP BY ALL ) SELECT *, LAG(query_cnt, 1) OVER(PARTITION BY user ORDER BY week_number) as prev_week_query_count FROM base연습문제 4WITH base as ( SELECT user, team, query_date, COUNT(user) as query_count, FROM advanced.query_logs GROUP BY ALL ) SELECT *, SUM(query_count) OVER(PARTITION BY user ORDER BY query_date) as cumulative_query_count FROM base ORDER BY user연습문제 5-- SELECT -- *, -- IF(number_of_orders is NULL, prev_number_of_orders, number_of_orders) as result_number_of_orders, -- FROM ( -- SELECT -- *, -- LAG(number_of_orders, 1) OVER(ORDER BY date) as prev_number_of_orders -- FROM raw_data -- ) -- 이 방법은 전의 값들이 Null이 여러개면 제대로 안나옴...! SELECT *, IF(number_of_orders is NULL, last_number_of_orders, number_of_orders) as result_number_of_orders, FROM ( SELECT *, LAST_VALUE(number_of_orders IGNORE NULLS) OVER(ORDER BY date) as last_number_of_orders FROM raw_data )연습문제 6SELECT *, AVG(result_number_of_orders) OVER(ORDER BY date ROWS BETWEEN 2 PRECEDING and CURRENT ROW) as moving_avg FROM ( SELECT *, IF(number_of_orders is NULL, last_number_of_orders, number_of_orders) as result_number_of_orders, FROM ( SELECT *, LAST_VALUE(number_of_orders IGNORE NULLS) OVER(ORDER BY date) as last_number_of_orders FROM raw_data ) )연습문제 7WITH base as ( SELECT event_date, event_timestamp, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') as event_datetime, event_name, user_id, user_pseudo_id FROM advanced.app_logs WHERE event_date = '2022-08-18' and user_pseudo_id = '1997494153.8491999091' ), base2 as ( SELECT *, LAG(event_datetime, 1) OVER(PARTITION BY user_pseudo_id ORDER BY event_datetime) as before_event_datetime FROM base ) SELECT *, SUM(session_start) OVER(PARTITION BY user_pseudo_id ORDER BY event_timestamp) as session_id FROM ( SELECT *, IF(second_diff is NULL or second_diff > 20, 1, NULL) as session_start FROM ( SELECT *, DATETIME_DIFF(event_datetime, before_event_datetime, second) as second_diff FROM base2 ) ) ORDER BY event_timestamp배운점&느낀점EXTRACT(WEEK FROM query_date) as week_number : date 정보에서 week 정보 등을 추출할 수 있는 함수DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') as event_datetime : timestamp 형태의 데이터를 날짜로 바꿀 수 있는 함수LAST_VALUE(number_of_orders IGNORE NULLS)... 그냥 마지막 값은 LAST_VALUE, 이전 데이터 중 null값이 아닌 마지막 값을 가져오고 싶을 때는 IGNORE NULLS를 사용해야 함. (5번 연습문제에서 처음에는 LAG 함수를 사용해서 null이 여러 개 연속인 경우가 있어 제대로 값을 가져오지 못했고, LAST_VALUE 윈도우 함수에서IGNORE NULLS 를 까먹어서 null 처리가 또 안됐었다.)With절과 서브쿼리 절을 어떤 상황에 사용할지 아직 잘 모르겠다.CASE WHEN절 사용법이 익숙치 않았다. (문제를 풀 때 IF절을 사용했던 부분에서 강의에서는 CASE WHEN을 사용)윈도우 함수를 제대로 처음 배워봤는데, 어려웠지만 유용한 부분이 많아 사용할 일이 많을 것 같다.
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[인프런 빅쿼리 빠짝스터디 2주차] 윈도우 함수, FRAME 설정, QUALIFY
연습 문제 (1)-- 1) SELECT user_id , visit_month , LEAD(visit_month, 1) OVER (PARTITION BY user_id ORDER BY visit_month) AS lead_visit_month , LEAD(visit_month, 2) OVER (PARTITION BY user_id ORDER BY visit_month) AS lead2_visit_month FROM advanced.analytics_function_01 ORDER BY user_id -- 2) SELECT user_id , visit_month , LEAD(visit_month) OVER (PARTITION BY user_id ORDER BY visit_month) AS after_visit_month , LEAD(visit_month, 2) OVER (PARTITION BY user_id ORDER BY visit_month) AS after2_visit_month , LAG(visit_month) OVER (PARTITION BY user_id ORDER BY visit_month) AS before_visit_month FROM advanced.analytics_function_01 ORDER BY user_id, visit_month -- 3) 유저가 접속했을 때, 다음 접속까지의 간격을 구하시오. SELECT * , after_visit_month - visit_month AS diff_month FROM ( SELECT user_id , visit_month , LEAD(visit_month) OVER (PARTITION BY user_id ORDER BY visit_month) AS after_visit_month FROM advanced.analytics_function_01 ) ORDER BY user_id , visit_month -- 4) 이 데이터셋을 기준으로 user_id의 첫번째 방문 월, 마지막 방문 월을 구하는 쿼리를 작성해주세요. SELECT * , FIRST_VALUE(visit_month) OVER (PARTITION BY user_id ORDER BY visit_month) AS first_month , LAST_VALUE(visit_month) OVER (PARTITION BY user_id ORDER BY visit_month) AS last_month FROM advanced.analytics_function_01 ORDER BY user_id , visit_month -- 윈도우 함수 - 데이터 범위 지정 SELECT * , SUM(amount) OVER () AS amount_sum , SUM(amount) OVER (ORDER BY order_id) AS cumulative_sum , SUM(amount) OVER (PARTITION BY user_id ORDER BY order_id) AS cumulative_sum_by_user , AVG(amount) OVER (ORDER BY order_id ROWS BETWEEN 5 PRECEDING AND 1 PRECEDING) AS last_5_orders_avg_amount FROM advanced.orders ORDER BY order_id 연습 문제 (2)-- 1) SELECT * , COUNT(user) OVER (PARTITION BY user) AS total_query_cnt FROM advanced.query_logs ORDER BY user -- 2) WITH query_cnt_by_team AS ( SELECT EXTRACT(WEEK FROM query_date) AS week_number , team , user , COUNT(user) AS query_cnt FROM advanced.query_logs GROUP BY ALL ) SELECT * , RANK() OVER (PARTITION BY week_number, team ORDER BY query_cnt DESC) AS rk FROM query_cnt_by_team QUALIFY rk = 1 ORDER BY week_number , team , query_cnt DESC -- 3) WITH query_cnt_by_team AS ( SELECT EXTRACT(WEEK FROM query_date) AS week_number , team , user , COUNT(user) AS query_cnt FROM advanced.query_logs GROUP BY ALL ) SELECT * , LAG(query_cnt, 1) OVER (PARTITION BY user ORDER BY week_number) AS prev_week_query_cnt FROM query_cnt_by_team ORDER BY user , week_number -- 4) SELECT query_date , team , user , query_cnt , SUM(query_cnt) OVER (PARTITION BY user ORDER BY query_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_sum FROM ( SELECT query_date , team , user , COUNT(user) AS query_cnt FROM advanced.query_logs GROUP BY ALL ) ORDER BY user , query_date -- 5) WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ) SELECT * , LAST_VALUE(number_of_orders IGNORE NULLS) OVER (ORDER BY date) AS before_number_of_orders FROM raw_data -- 6) WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ), filled_data AS ( SELECT * EXCEPT(number_of_orders) , LAST_VALUE(number_of_orders IGNORE NULLS) OVER (ORDER BY date) AS number_of_orders FROM raw_data ) SELECT * , AVG(number_of_orders) OVER (ORDER BY date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS moving_avg FROM filled_data -- 7) WITH step1 AS ( SELECT * EXCEPT(event_params, platform) , DATETIME(TIMESTAMP_MICROS(event_timestamp), "Asia/Seoul") AS event_datetime FROM advanced.app_logs WHERE user_pseudo_id = "1997494153.8491999091" AND event_date = '2022-08-18' ), step2 AS ( SELECT * , DATETIME_DIFF(event_datetime, prev_event_datetime, SECOND) AS second_diff FROM ( SELECT * , LAG(event_datetime) OVER (ORDER BY event_datetime) AS prev_event_datetime FROM step1 ) ORDER BY event_datetime ) SELECT * , SUM(session_start) OVER (ORDER BY event_datetime) AS session_num FROM ( SELECT * , CASE WHEN second_diff IS NULL THEN 1 WHEN second_diff >= 20 THEN 1 ELSE 0 END AS session_start FROM step2 ) ORDER BY event_datetime
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[인프런 빅쿼리 빠짝스터디 2주차] 윈도우 함수, FRAME 설정, QUALIFY
연습 문제(1) 윈도우 함수-- 1) user들의 다음 접속 월과 다다음 접속 월을 구하는 쿼리를 작성해주세요. SELECT user_id, visit_month, LEAD(visit_month, 1) OVER (PARTITION BY user_id ORDER BY visit_month) AS after_visit_month_1, LEAD(visit_month, 2) OVER (PARTITION BY user_id ORDER BY visit_month) AS after_visit_month_2, FROM `advanced.analytics_function_01` ORDER BY user_idLEAD 함수와 적절한 수를 이용해 작성LEAD 함수에 들어가는 인자에 따라 다음인지 다다음인지 정할 수 있음따로 정해주지 않을 경우 1로 인식OVER의 뒷 내용이 생각보다 조금 복잡해 한번에 떠오르지는 않았음OVER의 ORDER BY의 기본은 오름차순 -- 2) user들의 다음 접속 월과 다다음 접속 월, 이전 접속 월을 구하는 쿼리를 작성해주세요. SELECT user_id, visit_month, LEAD(visit_month, 1) OVER (PARTITION BY user_id ORDER BY visit_month) AS after_visit_month_1, LEAD(visit_month, 2) OVER (PARTITION BY user_id ORDER BY visit_month) AS after_visit_month_2, LAG(visit_month) OVER (PARTITION BY user_id ORDER BY visit_month) AS previous_visit_month_1, FROM `advanced.analytics_function_01` ORDER BY user_idLAG 사용해 이전 값 구해봄LAG 안에 특별한 숫자를 주지않으니 1로 인식하는 것을 확인함LEAD 값이 NULL → 해당 값이 마지막 값LAG 값이 NULL → 해당 값이 첫번째 값-- 3) user의 다음 접속까지의 간격을 구하시오 SELECT user_id, visit_month, LEAD(visit_month, 1) OVER (PARTITION BY user_id ORDER BY visit_month) AS after_visit_month_1, (LEAD(visit_month, 1) OVER (PARTITION BY user_id ORDER BY visit_month) - visit_month) AS diff_month, FROM `advanced.analytics_function_01` ORDER BY user_idSELECT 절에서 만들어진 컬럼은 그대로 사용할 수는 없음하지만 위와 같이 할 경우 너무 길어지고 복잡해짐(중복됨) → 서브쿼리 사용 SELECT *, (after_visit_month_1 - visit_month) AS diff_month FROM ( SELECT user_id, visit_month, LEAD(visit_month, 1) OVER (PARTITION BY user_id ORDER BY visit_month) AS after_visit_month_1, FROM `advanced.analytics_function_01` ORDER BY user_id )쿼리를 최대한 덜 수정하는 방향으로 작성해 볼 것(2) QUALIFY-- amount_total : 전체 SUM -- cumulative_sum : row 시점에 누적 SUM -- cumulative_sum_by_user : row 시점에 유저별 누적 SUM -- last_5_orders_avg_amount : order_id 기준으로 정렬하고, 직전 5개 주문의 평균 amount SELECT *, SUM(amount) OVER() AS amount_total, SUM(amount) OVER(ORDER BY order_id) AS cumulative_sum, SUM(amount) OVER(PARTITION BY user_id ORDER BY order_id) AS cumulative_sum_by_user, AVG(amount) OVER(ORDER BY order_id ROWS BETWEEN 5 PRECEDING AND 1 PRECEDING) AS last_5_orders_avg_amount FROM advanced.orders ORDER BY order_idBETWEEN 앞에 ROWS를 빼먹어서 계속 오류를 냈음-- 1) 사용자별 쿼리를 실행한 총 횟수를 구하는 쿼리를 작성해주세요. -- 단, GROUP BY를 사용해서 집계하는 것이 아닌 query_logs의 데이터의 우측에 새로운 컬럼을 만들어주세요. SELECT *, COUNT(query_date) OVER(PARTITION BY user) AS cnt_by_user FROM advanced.query_logs데이터에 NULL값이 없으므로 어떤 열을 세던지 상관 없음-- 2) 주차별로 팀 내에서 쿼리를 많이 실행한 수를 구한 후, 실행한 수를 활용해 랭킹을 구해주세요. -- 단, 랭킹이 1등인 사람만 결과가 보이도록 해주세요 SELECT *, RANK() OVER(PARTITION BY team, week_key ORDER BY cnt_by_user DESC) AS rnk FROM ( SELECT user, team, IF(query_date < '2024-05-01', 1, 2) AS week_key, COUNT(user) AS cnt_by_user FROM advanced.query_logs GROUP BY ALL ) QUALIFY rnk = 1 ORDER BY team, week_key'주차별’에 대한 아이디어가 잘 떠오르지 않았음 → 데이터의 범위가 좁기 때문에 일단은 IF를 통해 주차를 구분해줌 → 날짜 범위가 넓어지면 어떻게 할지 아직은 모르겠음서브 쿼리 사용해봄PARTITION이 2개임(주차별, 팀별)QUALIFY 사용할 것(생각 못하고 LIMIT 쓰려다 막힘)-- 강의 코드 WITH query_cnt_by_team AS( SELECT EXTRACT(WEEK FROM query_date) AS week_number, team, user, COUNT(user) AS query_cnt FROM advanced.query_logs GROUP BY ALL ) SELECT *, RANK() OVER(PARTITION BY week_number, team ORDER BY query_cnt DESC) AS rk FROM query_cnt_by_team QUALIFY rk = 1 ORDER BY week_number, team, query_cntEXTRACT 함수 통해 ‘주차’ 추출GROUP BY 후 윈도우 함수 사용 → 유연하게 사용할 것-- 3) (2번 문제에서 사용한 주차별 쿼리 사용) 쿼리를 실행한 시점 기준 1주 전에 쿼리 실행 수를 별도의 컬럼으로 확인할 수 있는 쿼리를 작성해주세요 SELECT *, LAG(query_cnt) OVER(PARTITION BY user ORDER BY week_number) AS previous_week_cnt FROM query_cnt_by_team ORDER BY userWITH AS로 만든 테이블 그대로 사용-- 4) 시간의 흐름에 따라, 일자별로 유저가 실행한 누적 쿼리 수를 작성해주세요 SELECT *, SUM(query_cnt) OVER(PARTITION BY user ORDER BY query_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumul_cnt FROM ( SELECT user, team, query_date, COUNT(*) AS query_cnt FROM advanced.query_logs GROUP BY ALL ) ORDER BY user, query_dateGROUP BY한 서브쿼리 사용FRAME 사용이 그렇게 까다롭진 않았음FRAME의 defalut 값 → UNBOUNDED PRECEDING ~ CURRENT ROW-- 5) 다음 데이터는 주문 횟수를 나타낸 데이터입니다. 만약 주문 횟수가 없으면 NULL로 기록됩니다. -- 이런 데이터에서 NULL 값이라고 되어있는 부분을 바로 이전 날짜의 값으로 채워주는 쿼리를 작성해주세요 SELECT date, IF(number_of_orders IS NULL, LAG(raw_data.number_of_orders, 1) OVER(ORDER BY date), number_of_orders) AS number_of_orders FROM raw_data조건문 사용해서 IS NULL인 값들만 LAG 사용기존의 number_of_orders가 사라지는 문제가 있음마지막 날짜는 안채워짐(연속으로 NULL이라) -- 강의 코드 SELECT *, LAST_VALUE(number_of_orders IGNORE NULLS) OVER(ORDER BY date) AS last_value_orders FROM raw_dataLAST_VALUE + IGNORE NULLS 사용-- 6) 5번 문제에서 NULL을 채운 후, 2일 전 ~ 현재 데이터의 평균을 구하는 쿼리를 작성해주세요(이동 평균) SELECT *, AVG(last_value_orders) OVER(ORDER BY date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS moving_average FROM ( SELECT *, LAST_VALUE(number_of_orders IGNORE NULLS) OVER(ORDER BY date) AS last_value_orders FROM raw_data서브쿼리 사용했지만 WITH로 정의해도 됨 → 문제에서는 WITH가 연속 두번 나오는데, WITH는 한번만 작성해도 됨(, 로 구분)-- 7) app_logs 테이블에서 Custom Session을 만들어 주세요. 이전 이벤트 로그와 20초가 지나면 새로운 Session을 만들어 주세요. -- Session은 숫자로 (1, 2, 3 ...) 표시해도 됩니다 WITH base AS( SELECT event_date, DATETIME(TIMESTAMP_MICROS(event_timestamp), "Asia/Seoul") AS event_datetime, event_name, user_id, user_pseudo_id, FROM advanced.app_logs WHERE (event_date = "2022-08-18") AND (user_pseudo_id = "1997494153.8491999091") ORDER BY event_timestamp ) SELECT *, SUM(diff_classification) OVER(ORDER BY event_datetime) + 1 AS session_id FROM ( SELECT *, IF(DATETIME_DIFF(event_datetime, before_datetime, second) > 20, 1, 0) AS diff_classification FROM ( SELECT *, LAG(event_datetime) OVER(PARTITION BY user_pseudo_id ORDER BY event_datetime) AS before_datetime, FROM base ) ) ORDER BY event_datetimetimestamp와 1초의 관계 : timestamp 1당 1초 아닌가? → 그렇다면 굳이 datetime으로 바꿀 필요가 있나서브쿼리 2번 중첩해서 사용IF문 사용해 20초 차이남 → 1 차이 안남 → 0 으로 파생해 누적합 + 1로 session_id 도출첫 행 before_datetime에 예외처리 해줄 것그런데 PARTITION BY 를 매 OVER 안에 무조건 써야 하나?EDA(2)요일별 접속자 수 + 기간 내 이벤트날요일별 접속자 평균을 내보자일 > 토 > 수 > 금 > 목 > 화 > 월 → 역시 쉬는날이 더 배달 수요가 많은건가? → 수요일은 왜 일까?2022-08-01(월) ~ 2023-01-20(금) 의 데이터주말(토, 일)이 아닌 공휴일 목록 → 네이버 캘린더 참조2022-08-15 월 : 광복절2022-09-09 금 : 추석연휴2022-09-12 월 : 추석연휴2022-10-03 월 : 개천절2023-01-23 월 : 설 연휴2023-01-24 화 : 설 연휴(대체공휴일)주요 이벤트 → 특정 사건이 있을 경우 배달 수요가 늘거나 줄지 않을까? / 위키 사이트 참조2022-08-02 화 : 코로나19 누적 감염자 2천만 명 돌파2022-08-08 월 : 수도권 기록적인 폭우 및 홍수2022-10-31 월 : 할로윈데이 / 2022-10-29 토에 이태원 압사 사고 발생2022-11-08 화 : 한국시리즈2022-11-17 목 : 2023학년도 대학수학능력시험2022-11-24 목 : 카타르 월드컵 vs 우루과이2022-11-28 월 : 카타르 월드컵 vs 가나2022-12-03 토 : 카타르 월드컵 vs 포르투갈2022-12-19 월 : 카타르 월드컵 결승2022-12-25 일 : 크리스마스등등…“특정 사건”의 중요도를 정성적으로 평가하기에는 어렵다고 느낌 → 오히려 반대로 갑자기 이용자 수의 변화가 급격하게 나타나는 날짜를 위주로 봐야하나? → 그런데 앱 이용자 수 성장 시기에는 항상 상승만해서 보기 애매할 듯 → 요일별 경향을 따져야 할 수도일요일 < 월요일(개천절) < 화요일 → 앱 이용자 수 상승 예시월드컵에 따른 이용자 수 변화는 뚜렷하지 않음수요일에 딱히 뭔가 보이진 않음 → 평일의 절반이 지남에 따른 보상 심리가 원인일수도?시간대에 따른 이용자 수마찬가지로 시간대별 평균 이용자 수 구해봄저녁 시간대(19시 ~ 22시)가 가장 이용자 수 많음점심 시간대(12시 ~ 14시)가 그 다음당연하게도 식사 시간에 배달 앱 수요가 많음시간대 별로 food_id 에 따른 수요가 다른지 확인해볼 것 → 시간대 별 이용자에게 추천해주는 음식 다르게 설정할 수 있음하루의 기준을 0시로 잡아도 되나?에 대한 의문이 생김(야식 수요) → 이거에 대한 기준을 다시 잡고 일별 이용자 수 다시 구해야 할수도
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[인프런 빅쿼리 빠짝스터디 2주차 과제] 윈도우 함수 연습문제
🔐 이번주차 중요 키워드 : 윈도우 함수, FRAME, QUALIFY ✅ 윈도우 함수 연습문제 1번1) 사용자별 쿼리를 실행한 총 횟수를 구하는 쿼리 작성 단, group by를 사용해서 집계하는 것이 아닌 query_logs의 데이터 우측에 새로운 컬럼을 만들어주세요. select *, count(query_date) over (partition by user) as query_cnt from advanced.query_logs order by query_cnt desc ✅ 윈도우 함수 연습문제 2번2) 주차별로 팀 내에서 쿼리를 많이 실행한 수 구하기 2-1) 실행한 수를 활용해 랭킹 구하기 -- 단, 랭킹이 1등인 사람만 결과가 보이도록 해주세요. week_number | team | user | query_cnt | team_rank select * , rank() over(partition by week_number, team order by query_cnt) as team_rank from ( select EXTRACT(week FROM query_date) as week_number, team, user, count(query_date) as query_cnt from advanced.query_logs group by all ) qualify team_rank = 1 order by week_number, team, query_cnt DESC ❗ 새롭게 알게된 함수 : EXTRACT(week FROM query_date) as week_number → 기존의 알고 있던 함수와 같은 결과값 : DATE_TRUNC(query_date, WEEK) AS week_number❗ qualify team_rank = 1 : QUALIFY 덕분에 서브쿼리 없이 바로 조건에 사용가능함! ✅ 윈도우 함수 연습문제 3번3) (2번 문제에서 사용한 주차별 쿼리 사용) 쿼리를 실행한 시점 기준 1주전에 쿼리 실행 수를 별도의 컬럼으로 확인할 수 있는 쿼리 작성 select * , LAG(query_cnt, 1) over (partition by user order by week_number) as pre_week_query_cnt from ( select EXTRACT(week FROM query_date) as week_number, team, user, count(query_date) as query_cnt from advanced.query_logs group by all ) ✅ 윈도우 함수 연습문제 4번4) 시간의 흐름에 따라, 일자별로 유저가 실행한 누적 쿼리수 작성 ## FRAME의 default값은 UNBOUNDED PRECEDING AND CURRENT ROW with query_cnt_by_team as ( select EXTRACT(week FROM query_date) as week_number, team, user, query_date, count(query_date) as query_cnt from advanced.query_logs group by all ) select *, sum(query_cnt) over (partition by user order by query_date ASC) as cumulative_SUM1, sum(query_cnt) over (partition by user order by query_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as cumulative_SUM2, from query_cnt_by_team ❗FRAME의 default값은 UNBOUNDED PRECEDING AND CURRENT ROW✅ 윈도우 함수 연습문제 5번) 주무횟수 데이터에서 주문횟수가 없으면 NULL로 기록됨. 이런 데이터에서 NULL값이라고 되어있는 부분을 바로 이전 날짜의 값으로 채워주는 쿼리 WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ) select * , ifnull(number_of_orders, LAST_VALUE(number_of_orders IGNORE NULLS) over(order by date)) as filled_orders from raw_data -- 조건절 ifnull 사용할 수 있음. -- LAG()를 사용하면 마지막 NULL값인 경우 채우는 값도 NULL! -- 그렇기 떄문에, LAST_VALUE()인데, NULL은 무시하라는 IGNORE NULLS! ❗️LAST_VALUE에서 IGNORE NULLS 안하면 값은 NULL✅ 윈도우 함수 연습문제 6번6) NULL을 채운후, 2일전 ~ 현재 데이터의 평균 (이동평균) WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ) select * , AVG(filled_orders) over (order by date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS avg_orders from ( select * , ifnull(number_of_orders, LAST_VALUE(number_of_orders IGNORE NULLS) over(order by date)) as filled_orders from raw_data ) ✅ 윈도우 함수 연습문제 7번7) app_logs 테이블에서 custom_session을 만들어 주세요:) 이전 이벤트 로그와 20초가 지나면 새로운 session을 만들어 주세요. event_date | event_timestamp | event_datetime | evnet_name | user_id | user_pseudo_id | before_event_datetime | second_diff | session_start | session_id with base as ( select event_date, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') as event_time, event_name, user_id, user_pseudo_id, from advanced.app_logs where event_date = "2022-08-18" and user_pseudo_id = "1997494153.8491999091" order by event_timestamp ) select *, sum(session_start) over (partition by user_pseudo_id order by event_time) as session_num from ( select *, CASE WHEN before_event_datetime IS NULL THEN 1 WHEN second_diff >=20 THEN 1 ELSE 0 END AS session_start from ( select *, DATETIME_DIFF(event_time, before_event_datetime, SECOND) AS second_diff from ( select *, LAG(event_time,1) over (partition by user_pseudo_id order by event_time) as before_event_datetime from base order by event_time ) ) ) ❗새롭게 알게 된 함수 DATETIME_DIFF : 처음에 날짜-시간 차이를 단순히 (-)로만 생각했다가 잘못된 결과 도출 → DATETIME_DIFF 함수로 정답도출!
-
미해결[왕초보편] 앱 8개를 만들면서 배우는 안드로이드 코틀린(Android Kotlin)
백 버튼 하는중인데 핸드폰에 버튼이 안나와요
제 기기에는 강의처럼 밑에 버튼이 안나오는데 왜 그런걸까요?
-
미해결MERN STACK 커뮤니티 : 시작부터 배포까지 알려주는 React
Heroku 데이터로드 문제.
heroku에 deploy하고나서 openApp하면 데이터가 로드 돼야 하는데 안돼는 이유가 먼지 그리고 axios 통신을 localhost:5000해서 문제인지 궁금합니다.
-
미해결Flutter로 SNS 앱 만들기
게시글 이미지 슬라이드 기능추가 carouselslider에러가 났습니다
3:50carouselslider에서 에러가 났습니다..carouselslider과 material 문제가 있나요?
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 2주차 과제] 윈도우 함수 연습 문제
강의 문제 1) user들의 다음 접속월과 다다음 접속월을 구하는 쿼리를 작성해주세요.-- 출제의도: 윈도우 함수(LEAD)를 사용하여 파티션을 나눠 데이터를 탐색할 수 있는가? SELECT user_id , visit_month AS visit_month_m0 , LEAD(visit_month) OVER (PARTITION BY user_id ORDER BY visit_month) AS visit_month_m1 , LEAD(visit_month, 2) OVER (PARTITION BY user_id ORDER BY visit_month) AS visit_month_m2 FROM advanced.analytics_function_01 ORDER BY user_id;강의 문제 2) user들의 다음 접속월과 다다음 접속월, 이전 접속월을 구하는 쿼리를 작성해주세요-- 출제의도: 윈도우 함수(LEAD)와 (LAG)을 함께 사용하여 파티션을 나눠 데이터를 탐색할 수 있는가? SELECT user_id , visit_month AS visit_month_m0 , LEAD(visit_month) OVER (PARTITION BY user_id ORDER BY visit_month) AS visit_month_m1 , LEAD(visit_month, 2) OVER (PARTITION BY user_id ORDER BY visit_month) AS visit_month_m2 , LAG(visit_month) OVER (PARTITION BY user_id ORDER BY visit_month) AS visit_month_p1 FROM advanced.analytics_function_01 ORDER BY user_id;강의 문제 3) Frame 설정을 활용한 윈도우 함수 사용SELECT order_id , order_date , user_id , amount , SUM(amount) OVER (ORDER BY order_date, order_id ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS amount_total , SUM(amount) OVER (ORDER BY order_date, order_id ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_sum , SUM(amount) OVER (PARTITION BY user_id ORDER BY order_date, order_id ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_sum_by_user , AVG(amount) OVER (ORDER BY order_date, order_id ROWS BETWEEN 5 PRECEDING AND 1 PRECEDING) AS last_5_orders_avg_amount FROM advanced.orders --QUALIFY last_5_orders_avg_amount >= 150 ORDER BY order_id;윈도우 함수 연습문제 1) 사용자별 쿼리를 실행한 총 횟수를 구하는 쿼리를 작성해주세요. 단, GROUP BY를 사용해서 집계하는 것이 아닌, query_logs의 데이터 우측에 새로운 컬럼을 만들어주세요. -- 출제의도: 윈도우 함수의 집계 함수 중 COUNT를 사용할 수 있는가? SELECT * , COUNT(user) OVER (PARTITION BY user) AS total_query_cnt FROM advanced.query_logs ORDER BY query_date, user;윈도우 함수 연습문제 2) 주차별로 팀 내에서 쿼리를 많이 실행한 수를 구한 후, 실행한 수를 활용해 랭킹을 구해주세요. 단, 랭킹이 1등인 사람만 결과가 보이도록 해주세요. -- 출제의도: GROUP BY와 윈도우 함수(순위)를 함께 사용할 수 있는가? SELECT * , RANK() OVER (PARTITION BY week_number, team ORDER BY query_cnt DESC) AS team_rank FROM (SELECT EXTRACT(WEEK FROM query_date) AS week_number , team , user , COUNT(user) AS query_cnt FROM advanced.query_logs GROUP BY ALL) QUALIFY team_rank = 1 ORDER BY week_number, team;윈도우 함수 연습문제 3) (2번 문제에서 사용한 주차별 쿼리 사용) 쿼리를 실행한 시점 기준, 1주 전에 쿼리 실행 수를 별도의 컬럼으로 확인할 수 있는 쿼리를 작성해주세요. -- 출제의도: GROUP BY와 윈도우 함수(LAG)를 함께 사용할 수 있는가? SELECT * , LAG(query_cnt) OVER (PARTITION BY user ORDER BY week_number) AS prev_week_query_count FROM (SELECT user , team , EXTRACT(WEEK FROM query_date) AS week_number , COUNT(user) AS query_cnt FROM advanced.query_logs GROUP BY ALL) ORDER BY user, week_number;윈도우 함수 연습문제 4) 시간 흐름에 따라, 일자별로 유저가 실행한 누적 쿼리 수를 작성해주세요. -- *FRAME의 DEFAULT 값: UNBOUNDED PRECEDING ~ CURRENT ROW -- 출제의도: GROUP BY와 윈도우 함수(SUM-누계합)를 함께 사용할 수 있는가? SELECT * , SUM(query_cnt) OVER (PARTITION BY user ORDER BY query_date) AS cumulative_query_count FROM (SELECT user , team , query_date , COUNT(user) AS query_cnt FROM advanced.query_logs GROUP BY ALL) ORDER BY user, query_date;윈도우 함수 연습문제 5) 다음 데이터는 주문 횟수를 나타낸 데이터입니다. 만약 주문 횟수가 없으면 NULL로 기록됩니다. 이런 데이터에서 NULL 값이라고 되어있는 부분을 바로 이전 날짜의 값으로 채워주는 쿼리를 작성해주세요. -- 출제의도: 윈도우 함수(LAST_VALUE)에서 IGNORE NULLS가 필요한 상황을 이해할 수 있는가? WITH raw_data AS( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ) -- SELECT -- date -- , IFNULL(number_of_orders, LAG(number_of_orders) OVER (ORDER BY date)) AS number_of_orders -- FROM raw_data -- ORDER BY date; SELECT * , LAST_VALUE(number_of_orders IGNORE NULLS) OVER (ORDER BY date) AS number_of_orders FROM raw_data ORDER BY date;윈도우 함수 연습문제 6) 5번 문제에서 NULL을 채운 후, 2일 전 ~ 현재 데이터의 평균을 구하는 쿼리를 작성해주세요. -- 출제의도: 예외 값을 처리한 이후, 윈도우 함수로 이동 평균을 계산할 수 있는가? WITH raw_data AS( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ) SELECT * , ROUND(AVG(number_of_orders) OVER (ORDER BY date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) , 1) AS moving_avg FROM( SELECT date , IFNULL(number_of_orders, LAG(number_of_orders) OVER (ORDER BY date)) AS number_of_orders FROM raw_data) ORDER BY date;윈도우 함수 연습문제 7) app_logs 테이블에서 Custom Session을 만들어주세요. 이전 이벤트 로그와 20초가 지나면 새로운 Session을 만들어 주세요. -- *Session은 숫자로(1,2,3…) 표시해도 됩니다. -- **2022-08-18일의 user_pseudo_id(1997494153. 8491999091)은 session_id가 4까지 나옵니다 -- 출제의도: 윈도우 함수를 웹 로그 데이터에 적용하여 활용할 수 있는가? -- Step 1. Session 정보 추출 WITH base AS( SELECT event_date , event_timestamp , DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime , event_name , user_id , user_pseudo_id , DATETIME(TIMESTAMP_MICROS(LAG(event_timestamp) OVER (PARTITION BY user_pseudo_id ORDER BY event_timestamp)), 'Asia/Seoul') AS before_event_datetime FROM advanced.app_logs WHERE event_date = '2022-08-18' AND user_pseudo_id = '1997494153.8491999091' ), -- Step 2. 세션 유지 시간 및 신규 세션 여부 계산 session_info AS( SELECT * , TIMESTAMP_DIFF(event_datetime, before_event_datetime, SECOND) AS second_diff , CASE WHEN TIMESTAMP_DIFF(event_datetime, before_event_datetime, SECOND) >= 20 OR TIMESTAMP_DIFF(event_datetime, before_event_datetime, SECOND) IS NULL THEN 1 ELSE NULL END AS session_start FROM base ) -- Step 3. 신규 세션 id 세팅 SELECT * , SUM(session_start) OVER (PARTITION BY user_pseudo_id ORDER BY event_datetime) AS session_id FROM session_info ORDER BY event_date, event_timestamp;
-
해결됨[Unity] 함께 만들어가는 방치형 게임 개발
안녕하세요 초반 프로젝트 생성 버전 관련해서 질문 드립니다.(2022.3.6f1)
https://unity.com/kr/releases/editor/archive안녕하세요 강사님 ! 현재 유니티 공식 홈페이지에서 지원하는 유니티 LTS의 경우 2022.3.51이 최신으로 나와있고 이후에는 2023으로 넘어가는것 같습니다. 구글링을 통해 찾아보니 유니티 공식 홈페이지가 아니라 다른 깃허브나 외부 링크를 통해 다운로드를 받을 수는 있지만 안정성 면에서 공식 홈페이지를 통해 다운로드를 하는 것이 좋아보여서 질문을 남깁니다. 혹시 2022.3.6f1 버전을 공식 홈페이지가 아니라 다른 경로로 설치를 해야 할까요? 아니면 최신 2022인 3.5를 통해 프로젝트를 진행해도 괜찮을까요??
-
미해결[초급편] 안드로이드 커뮤니티 앱 만들기(Android Kotlin)
회원탈퇴 기능을 추가하려고 합니다.
홈화면 우측 상단 삼단메뉴 바를 통해 로그아웃 기능이 있는데 회원탈퇴 기능은 없는 듯 하여 로그아웃 버튼 아래에 회원탈퇴 버튼을 추가 하고 싶습니다. 어느 코드창에 추가하여야 하나요?
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[인프런 빅쿼리 빠짝스터디 2주차] 윈도우 함수, FRAME설정, QUALITY
윈도우 탐색 함수 연습문제(1) 연습문제 1-- 문제 1) USER의 다음 접속월, 다다음 접속 월 SELECT user_id, visit_month, LEAD(visit_month,1) OVER(PARTITION BY user_id ORDER BY visit_month) AS next_month, LEAD(visit_month,2) OVER(PARTITION BY user_id ORDER BY visit_month) AS the_month_after_next FROM `avdanced.analytics_function_01` (2) 연습문제 2-- 문제 2) USER의 다음 접속월, 다다음 접속 월, 이전 접속 월 SELECT user_id, visit_month, LEAD(visit_month,1) OVER(PARTITION BY user_id ORDER BY visit_month) AS next_month, LEAD(visit_month,2) OVER(PARTITION BY user_id ORDER BY visit_month) AS the_month_after_next, LAG(visit_month,1) OVER(PARTITION BY user_id ORDER BY visit_month) AS last_month FROM `avdanced.analytics_function_01` 윈도우 함수 FRAME 연습문제연습문제 (1~4)SELECT -- 1)모든 주문량 SUM(amount) OVER() AS amount_total, -- 2)특정주문시점에서 누적주문량 #SUM(amount) OVER(partition by order_date) AS cumulative_sum, SUM(amount) OVER (ORDER BY order_date) AS cumulative_sum, -- 3)고객별 주문 시점에서 누적 주문량 #SUM(amount) OVER(partition by user_id) AS cumulative_sum_by_user, SUM(amount) OVER(partition by user_id ORDER BY order_id) AS cumulative_sum_by_user, -- 4) 최근 직전 5개 평균 주문량 AVG(amount) OVER(ROWS BETWEEN 5 PRECEDING AND 1 PRECEDING) AS last_5_orders_avg_amount, AVG(amount) OVER(ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING) AS last_5_unbounded_orders_avg_amount, AVG(amount) OVER(ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS all_orders_avg_amount FROM `avdanced.orders` 윈도우 함수(1) 연습문제 1-- 연습문제1) 사용자별 쿼리 실행 횟수 WITH base AS( SELECT user, team, query_date, COUNT(*) OVER(PARTITION BY user) AS total_query_cnt, FROM `avdanced.query_logs` ) SELECT * FROM base(2) 연습문제 2-- 연습문제2) 주차별 팀내 쿼리 실행한 수 (RANK 1만 보이도록) WITH base2 AS( SELECT EXTRACT(WEEK FROM query_date) AS week_number, team, user, COUNT(*) OVER(PARTITION BY EXTRACT(WEEK FROM query_date) ,user ORDER BY EXTRACT(WEEK FROM query_date) ) AS query_cnt, FROM `avdanced.query_logs` ORDER BY EXTRACT(WEEK FROM query_date) ) SELECT DISTINCT *, RANK() OVER(PARTITION BY team,week_number ORDER BY total_query_cnt DESC) AS team_rank FROM base2 QUALIFY team_rank = 1 ORDER BY week_number, team강의자료의 코드-- 2) 주차별로 팀 내에서 쿼리를 많이 실행한 수를 구한 후, 실행한 수를 활용해 랭킹을 구해주세요. 단, 랭킹이 1등인 사람만 결과가 보이도록 해주세요 -- 주차별로 개인당 실행한 쿼리 횟수 -- 위 쿼리 횟수를 기반으로 랭킹 -- 랭킹을 기반으로 필터링(랭킹=1) -- 문제의 의도 : 원본 데이터 => 1 row마다 데이터가 있고, 그걸 집계해서 사용. GROUP BY => 윈도우 함수 WITH query_cnt_by_team AS ( SELECT EXTRACT(WEEK FROM query_date) AS week_number, team, user, COUNT(user) AS query_cnt FROM advanced.query_logs GROUP BY ALL ) SELECT *, RANK() OVER(PARTITION BY week_number, team ORDER BY query_cnt DESC) AS rk FROM query_cnt_by_team -- QUALIFY : 윈도우 함수의 조건을 설정할 때 사용 QUALIFY rk = 1 ORDER BY week_number, team, query_cnt DESCCOUNT의 윈도우 함수 대신에 GROUP BY를 사용하는 풀이도 있다는 것을 알게 되었다! 너무 어렵게 생각하지 말기!(3) 연습문제 3WITH base2 AS( SELECT EXTRACT(WEEK FROM query_date) AS week_number, team, user, COUNT(*) OVER(PARTITION BY EXTRACT(WEEK FROM query_date) ,user ORDER BY EXTRACT(WEEK FROM query_date) ) AS query_cnt, FROM `avdanced.query_logs` #QUALIFY team_rank = 1 ORDER BY EXTRACT(WEEK FROM query_date) ), base3 AS( SELECT DISTINCT *, RANK() OVER(PARTITION BY team,week_number ORDER BY query_cnt DESC) AS team_rank FROM base2 QUALIFY team_rank = 1 ORDER BY week_number, team ) -- 연습문제3) 쿼리 실행 시점 1주전 쿼리 실행 SELECT DISTINCT *, LAG(query_cnt,1) OVER(PARTITION BY user ORDER BY week_number) AS prev_week_query_count FROM base2 GROUP BY ALL ORDER BY user, week_number(4) 연습문제 4--연습문제4) SELECT *, SUM(query_count) OVER(PARTITION BY user ORDER BY query_date) AS culmulative_query_count, SUM(query_cnt) OVER(PARTITION BY user ORDER BY query_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_sum2 FROM( SELECT DISTINCT *, COUNT(user) OVER(PARTITION BY query_date, user) AS query_count, FROM `avdanced.query_logs` ) ORDER BY user,query_date QUALIFY 로 조건설정을 하여 두 값이 같은 지 비교하는 법이 인상깊었던 문제 (QUALIFY cumulative_sum != cumulative_sum2) (5) 연습문제 5나의 풀이WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ) --연습문제 5) null에 이전 값 삽입 SELECT raw_data.date, IF(raw_data.number_of_orders IS NULL, LAG(raw_data.number_of_orders,1) OVER(ORDER BY date), raw_data.number_of_orders) FROM raw_data강의풀이WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ), -- LAG로 직전 값 가져오면 되지 않을까? -- number_of_orders가 null이면, before_number_of_orders를 가져와라! -- 아래 쿼리는 어려운 방법 -- 그 다음 방법 : LAST VALUE를 쓰자! => 값이 없으면 NULL이 뜬다! -- FIRST_VALUE, LAST_VALUE => NULL을 포함해서 연산 -- 출제 의도 : NULL을 제외해서 연산하고 싶으면 IGNORE NULLS을 쓰면 된다! -- SELECT -- *, -- IF(number_of_orders IS NULL, before_number_of_orders, number_of_orders) AS filled_orders -- -- Number of arguments does not match for function IF. Supported signature: IF(BOOL, ANY, ANY) at [89:3] -- -- False일 때 인자를 추가하지 않아서 생긴 오류 -- FROM ( -- SELECT -- *, -- LAG(number_of_orders) OVER(ORDER BY date) AS before_number_of_orders -- FROM raw_data -- ) filled_data AS ( SELECT * EXCEPT(number_of_orders), LAST_VALUE(number_of_orders IGNORE NULLS) OVER(ORDER BY date) AS number_of_orders FROM raw_data -- Syntax error: Expected keyword DEPTH but got identifier "filled_data" at [104:6] : WITH문을 두개 작성했는데 WITH 쉼표 쓰고 구분! )LAST_VALUE, FIRST_VALUE를 사용하는 풀이 법에 대하여 알게 됨(6) 연습문제 6WITH raw_data AS ( SELECT DATE '2024-05-01' AS date, 15 AS number_of_orders UNION ALL SELECT DATE '2024-05-02', 13 UNION ALL SELECT DATE '2024-05-03', NULL UNION ALL SELECT DATE '2024-05-04', 16 UNION ALL SELECT DATE '2024-05-05', NULL UNION ALL SELECT DATE '2024-05-06', 18 UNION ALL SELECT DATE '2024-05-07', 20 UNION ALL SELECT DATE '2024-05-08', NULL UNION ALL SELECT DATE '2024-05-09', 13 UNION ALL SELECT DATE '2024-05-10', 14 UNION ALL SELECT DATE '2024-05-11', NULL UNION ALL SELECT DATE '2024-05-12', NULL ), null_is_lag AS( --연습문제 5) null에 이전 값 삽입 SELECT raw_data.date, IF(raw_data.number_of_orders IS NULL, LAG(raw_data.number_of_orders,1) OVER(ORDER BY date), raw_data.number_of_orders) AS number_of_orders FROM raw_data ) -- 연습문제 6) 이동평균 SELECT *, AVG(nl.number_of_orders) OVER(ORDER BY nl.date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS moving_avg FROM null_is_lag AS nlFRAME절을 사용할 때, AND를 기준으로 앞에는 뒤의 값보다 반드시 이전 행을 가리키는 구문이 와야 함!(7) 연습문제 7-- 1. TIMESTAMP → DATETIME -- 2. SECOND_DIFF 생성 : uSER로 묶어서 - -- 3. SESSION_START생성 : USER로 묶어서 LAG(DATA,1)이 NULL이면 1, SECOND_DIFF가 20이상이면 +1 -- 4. SESSION_ID생성: SESSION_START가 1일 경우 SESSION_ID +1, NULL일 경우 LAG(DATA,1) WITH add_date AS ( -- 1. TIMESTAMP → DATETIME SELECT event_date, event_timestamp, DATETIME(TIMESTAMP_MICROS(event_timestamp)) AS event_datetime, event_name, user_id, user_pseudo_id, LAG(DATETIME(TIMESTAMP_MICROS(event_timestamp))) OVER(PARTITION BY user_pseudo_id ORDER BY event_timestamp) AS before_event_datetime FROM `avdanced.app_logs_temp` --,UNNEST(event_params) AS param -- FROM 절 안에서 UNNEST를 사용 WHERE event_date ="2022-08-18" AND user_pseudo_id = "1997494153.8491999091" ), add_diff AS ( -- 2. SECOND_DIFF 생성 : uSER로 묶어서 - SELECT *, DATE_DIFF(event_datetime, before_event_datetime,SECOND) AS second_diff, FROM add_date ), add_session AS( -- 3. SESSION_START생성 : USER로 묶어서 LAG(DATA,1)이 NULL이면 1, SECOND_DIFF가 20이상이면 +1 SELECT *, IF(second_diff IS NULL OR second_diff >=20, 1, NULL) AS session_start FROM add_diff ) -- 4. SESSION_ID생성 *, SUM(session_start) OVER(PARTITION BY user_pseudo_id ORDER BY event_datetime) AS session_num FROM add_session ORDER BY event_datetime user_id와 user_pseudo_id는 다르다. (계정이 존재하면 USER_ID, 없어도 USER_PSEUDO_ID를 통해 활동기록이 남는다.)IF문은 행 단위로 작동, SUM은 특정 파티션에 대한 누적합을 계산함으로 아래 코드가 작동하지 않음 SUM(session_start) OVER(PARTITION BY user_pseudo_id ORDER BY event_datetime) AS session_numCTE를 사용하는 것과 서브쿼리를 사용하는 방법 중 상황에 맞게 적절히 혼용할 수 있다는 것을 알게 됨!
-
해결됨[Unity] 함께 만들어가는 방치형 게임 개발
스테이지 반복이 진행될 수록 몬스터 스케일이 작아집니다.
현재 스테이트패턴 Dead 까지 수강한 상태이구요,스테이지의 반복이 진행될수록, 몬스터 스케일이 불규칙적으로 작아집니다.처음에는, 몬스터 스케일이 불규칙적으로 작아지는것에 있어서 몬스터가 스폰되는 중에 캐릭터가 100%까지 처치를 완료하여, SpawnStart 코루틴메서드를 통해 LocalScale이 커지고 있는 도중, Return 메서드가 호출되어 비활성화가 된듯한 느낌을 받아(게임오브젝트가 비활성화가 되면 코루틴메서드가 중단되지않나요?) 확인해보았으나, 정확하게 원인을 파악하지 못했습니다 ㅠ 그리고 몬스터가 스폰되지 않았음에도 허공에 어택모션을 계속 취하는 버그도 있습니다.분명 풀링에는 전부 비활성화인데, 타겟이 있는것처럼 허공에 공격모션을 계속 취하다가, 몬스터가 실제로 스폰되면 추적하여 공격을 실행합니다. 제가 혹시 코드에 잘못된부분이 있다면 리뷰 한번만 부탁드립니다. ㅠ 추가적으로 필요하신 코드나, 직접적인 버그영상이 필요하시면 댓글한번만 남겨주시면 동영상을 개인메일이나, 유튜브 링크로 첨부해서 보여드리겠습니다. using System.Collections; using System.Collections.Generic; using UnityEngine; public class Spawner : MonoBehaviour { public int M_Count; // 몬스터의 수 public float M_SpawnTime; // 몇 초마다 스폰이 될 것인지 결정. // 1. 몬스터는 여러마리가 몇 초 마다 수시로 여러번 스폰 되어야 한다. //Spawner 에 손쉽게 접근하기 위해, static으로 설계 public static List<Monster> m_monsters = new List<Monster>(); public static List<Player> m_players = new List<Player>(); private Coroutine coroutine; private void Start() { Base_Manager.Stage.M_PlayEvent += OnPlay; Base_Manager.Stage.M_BossEvent += OnBoss; } public void OnPlay() { coroutine = StartCoroutine(SpawnCoroutine()); } public void OnBoss() { if(coroutine != null) { StopCoroutine(coroutine); } for(int i = 0; i<m_monsters.Count; i++) { Base_Manager.Pool.m_pool_Dictionary["Monster"].Return(m_monsters[i].gameObject); //Destroy(m_monsters[i].gameObject); } m_monsters.Clear(); StartCoroutine(BossSetCoroutine()); } IEnumerator BossSetCoroutine() { yield return new WaitForSeconds(2.0f); var monster = Instantiate(Resources.Load<Monster>("Boss"), Vector3.zero, Quaternion.Euler(0, 180, 0)); // 보스 생성 monster.Init(); Vector3 Pos = monster.transform.position; // 같은 변수를 사용할 때는, 한 변수로 묶어서 사용하면 메모리 절약이 됨. (중복계산방지) // 일정 소환거리 내부에 플레이어가 존재하면, 보스 소환 시, 넉백을 합니다. for(int i = 0; i<m_players.Count; i++) { if(Vector3.Distance(Pos, m_players[i].transform.position) <= 3.0f) { m_players[i].transform.LookAt(monster.transform.position); m_players[i].Knock_Back(); } } yield return new WaitForSeconds(1.5f); m_monsters.Add(monster); Base_Manager.Stage.State_Change(Stage_State.BossPlay); } //Random.insideUnitSphere = Vector3(x,y,z) //Random.insideUnitCircle = Vector3(x,y) IEnumerator SpawnCoroutine() { Vector3 pos; for(int i = 0; i < M_Count; i++) { pos = Vector3.zero + Random.insideUnitSphere * 5.0f; pos.y = 0.0f; Vector3 returnPos = Vector3.zero; while (Vector3.Distance(pos, Vector3.zero) <= 3.0f) { pos = Vector3.zero + Random.insideUnitSphere * 5.0f; pos.y = 0.0f; } //몬스터 스폰 var go = Base_Manager.Pool.Pooling_OBJ("Monster").Get((value) => { // 풀링이 생성될때의 기능을 구현한다. value.GetComponent<Monster>().Init(); value.transform.position = pos; value.transform.LookAt(Vector3.zero); m_monsters.Add(value.GetComponent<Monster>()); }); } yield return new WaitForSeconds(M_SpawnTime); coroutine = StartCoroutine(SpawnCoroutine()); } } using System.Collections; using System.Collections.Generic; using UnityEngine; public class Monster : Character { /// <summary> /// 몬스터가 스폰이 될 때, 스케일의 크기변화를 줍니다. /// </summary> /// <returns></returns> IEnumerator Spawn_Start() { float current = 0.0f; float percent = 0.0f; float start = 0.0f; float end = transform.localScale.x; // 몬스터의 로컬스케일 Debug.Log($"몬스터의 로컬스케일 변화 :{transform.localScale.x}"); while(percent < 1) { current += Time.deltaTime; percent = current / 0.2f; float LerpPos = Mathf.Lerp(start,end, percent); // 선형보간 (시작값,끝값,시간) transform.localScale = new Vector3(LerpPos, LerpPos, LerpPos); yield return null; } yield return new WaitForSeconds(0.3f); isSpawn = true; } private void Dead_Event() { if (!isBoss) { Stage_Manager.Count++; Main_UI.Instance.Monster_Slider_Count(); } else { Base_Manager.Stage.State_Change(Stage_State.Clear); } Spawner.m_monsters.Remove(this); Base_Manager.Pool.Pooling_OBJ("Smoke").Get((value) => { value.transform.position = new Vector3(transform.position.x, 0.5f, transform.position.z); Base_Manager.instance.Return_Pool(value.GetComponent<ParticleSystem>().duration, value, "Smoke"); }); Base_Manager.Pool.Pooling_OBJ("COIN_PARENT").Get((value) => { value.GetComponent<Coin_Parent>().Init(transform.position); }); for (int i = 0; i < 3; i++) { Base_Manager.Pool.Pooling_OBJ("Item_OBJ").Get((value) => { value.GetComponent<Item_OBJ>().Init(transform.position); // 몬스터 위치 삽입 }); } if (!isBoss) { Base_Manager.Pool.m_pool_Dictionary["Monster"].Return(this.gameObject); } else { Destroy(this.gameObject); // 보스몬스터는 풀링하지않고 파괴한다. } } }