묻고 답해요
143만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결[Bloc 응용] 실전 앱 만들기 (책 리뷰 앱) : SNS 로그인, Firebase 적용, Bloc 상태 관리, GoRouter
비동기 처리방식
1.비동기 처리방식중 future와 stream이 있다고 하는데 도서리뷰앱에서는 비동기 처리방식 중 future을 사용하는건가요? stream을 사용하는건가요?2.코드에서 await과 async을 사용한것을 봤을때 future방식인지 궁금합니다. 그리고 bloc이 stream 기반이라고 하는데 두가지 방식 다 사용된건지 궁금합니다.3.widget_test부분에 사용된 await도 비동기 처리방식 중 하나인건가요?
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디] 3주차 리텐션 과제
노션 링크로 업로드 합니다!https://qkffpsxkdlwm.notion.site/3-13a35e3a8bef8019b7a6d9c6abc72193?pvs=4
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 3주차 과제] 리텐션 분석
노션에서 작성했습니다! https://salt-baron-5c5.notion.site/3-13aa734e64b880a1a9a1e84a92fa3593
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디] 3주차 리텐션 과제
Notion 링크로 대체합니다.https://colney4844.notion.site/3-13a59b98d5db80438b7fcef0146771f6?pvs=4
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 3주차 과제] 리텐션 연습문제
1. Weekly RetentionWITH base AS ( SELECT DISTINCT DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime, DATE(DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul')) AS event_date, DATE_TRUNC(DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul'), WEEK(MONDAY)) AS event_week, DATE_TRUNC(DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul'), MONTH) AS event_month, user_id, user_pseudo_id, event_name, platform, event_params FROM advanced.app_logs ), user_visit_base AS ( SELECT user_pseudo_id, MIN(event_week) OVER (PARTITION BY user_pseudo_id) AS first_visit_week, event_week AS visit_week FROM base ), user_visit_weekdiff AS ( SELECT first_visit_week, DATE_DIFF(visit_week, first_visit_week, week) AS week_diff, COUNT(DISTINCT user_pseudo_id) AS visit_users FROM user_visit_base GROUP BY ALL ) SELECT first_visit_week, week_diff, visit_users, SAFE_DIVIDE(visit_users, FIRST_VALUE(visit_users) OVER (PARTITION BY first_visit_week ORDER BY week_diff ASC ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)) AS retention FROM user_visit_weekdiff 2. Retain User → New User, Current User, Resurrected User, Dormant User-- 한 달(30일)을 기준으로 구분하였다. -- 신규 유저: 최근 한 달 이내 새로 방문 -- 기존 유저: 최근 한 달 이내 재방문, 그 이전 한달에도 방문 -- 복귀 유저: 최근 한 달 이내 재방문, 그 이전 한달에는 방문 X -- 휴먼 유저: 최근 한 달 이내 재방문 X WITH base AS ( SELECT DISTINCT DATE(DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul')) AS event_date, user_pseudo_id FROM advanced.app_logs ), user_first_last AS ( SELECT user_pseudo_id, MIN(event_date) AS first_date, MAX(event_date) AS last_date FROM base GROUP BY user_pseudo_id ), last_event_date AS ( SELECT MAX(event_date) AS current_date FROM base ), user_activity AS ( SELECT user_pseudo_id, event_date, LEAD(event_date) OVER (PARTITION BY user_pseudo_id ORDER BY event_date) AS next_event_date, CASE WHEN DATE_DIFF(LEAD(event_date) OVER (PARTITION BY user_pseudo_id ORDER BY event_date), event_date, DAY) > 30 THEN 1 ELSE 0 END AS dormant_history FROM base ), user_types AS ( SELECT u.user_pseudo_id, u.first_date, u.last_date, led.current_date, MAX(us.dormant_history) AS dormant_history, CASE WHEN DATE_DIFF(led.current_date, u.last_date, DAY) > 30 THEN 'dormant_user' WHEN DATE_DIFF(u.last_date, u.first_date, DAY) <= 30 THEN 'new_user' WHEN MAX(us.dormant_history) = 1 THEN 'resurrected_user' ELSE 'current_user' END AS user_type FROM user_first_last AS u CROSS JOIN last_event_date AS led LEFT JOIN user_activity AS us ON u.user_pseudo_id = us.user_pseudo_id GROUP BY u.user_pseudo_id, u.first_date, u.last_date, led.current_date ), first_week_and_diff AS ( SELECT ut.user_type, fw.user_pseudo_id, fw.event_date, DATE_DIFF(DATE_TRUNC(fw.event_date, WEEK(MONDAY)), DATE_TRUNC(ut.first_date, WEEK(MONDAY)), WEEK) AS diff_of_week FROM base AS fw JOIN user_types AS ut ON fw.user_pseudo_id = ut.user_pseudo_id ), user_cnt_by_type_and_week AS ( SELECT user_type, diff_of_week, COUNT(DISTINCT user_pseudo_id) AS user_cnt FROM first_week_and_diff GROUP BY user_type, diff_of_week ), retention_base AS ( SELECT user_type, diff_of_week, user_cnt, FIRST_VALUE(user_cnt) OVER (PARTITION BY user_type ORDER BY diff_of_week) AS first_user_cnt FROM user_cnt_by_type_and_week ) SELECT user_type, diff_of_week, ROUND(SAFE_DIVIDE(user_cnt, first_user_cnt), 2) AS retention_rate FROM retention_base ORDER BY user_type, diff_of_week 3. retention이 높은 그룹?current user: 최고 0.41 (4~5주차)new user: 최고 0.11 (1,3주차)resurrected user: 최고 0.14 (9~12주차)dormant user: 최고 0.09 (3주차)리텐션이 그나마 높은 그룹: current usercurrent user, resurrected user 리텐션 분포의 경우 상승세 → 하강세 경향성을 보여 피크를 찍을 때 즈음 어떤 이벤트가 있었다고도 추측할 수 있다. 4. click_payment 이벤트를 중점으로 본 Weekly Retention?WITH base AS ( SELECT DISTINCT DATE(DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul')) AS event_date, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime, event_name, user_id, user_pseudo_id FROM advanced.app_logs WHERE 1=1 AND event_name = "click_payment" ), event_week_and_first_week AS ( SELECT DISTINCT DATE_TRUNC(event_date, WEEK(MONDAY)) AS event_week, user_pseudo_id, DATE_TRUNC(MIN(event_date) OVER(PARTITION BY user_pseudo_id ORDER BY event_date), WEEK(MONDAY)) AS first_week FROM base ), retention_base AS ( SELECT *, FIRST_VALUE(user_cnt) OVER(ORDER BY day_of_week) AS total_user FROM ( SELECT DATE_DIFF(event_week, first_week, WEEK) AS day_of_week, COUNT(DISTINCT user_pseudo_id) AS user_cnt FROM event_week_and_first_week GROUP BY day_of_week ) ) SELECT day_of_week, ROUND(SAFE_DIVIDE(user_cnt, total_user), 2) AS retention FROM retention_base ORDER BY day_of_week
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디 3주차 과제] 리텐션 과제
Notion으로 작성하여 링크를 첨부합니다.https://polite-vinyl-a61.notion.site/3-13a4994b207d804f969dc98e5bce9794
-
해결됨[풀스택 완성] Supabase로 웹사이트 3개 클론하기 (Next.js 14)
채팅기능 getAllUsers 질문드립니다.
Error: async/await is not yet supported in Client Components, only Server Components. This error is often caused by accidentally adding 'use client' to a module that was originally written for the server.이라는 에러가 뜨고 유저리스트가 빈배열 리턴되는데 이런 경우 어떻게 처리해야하나요?
-
미해결BigQuery(SQL) 활용편(퍼널 분석, 리텐션 분석)
[빠짝스터디] 3주차 과제 제품 현황 분석 : 리텐션 분석
과제. 직접 retention 구해보기(주별 weekly)WITH base AS ( SELECT DISTINCT user_id, user_pseudo_id, event_name, DATE(DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul')) AS event_date, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime FROM advanced.app_logs WHERE event_date BETWEEN "2022-08-01" AND "2022-11-03" ), first_week_and_diff AS( SELECT *, -- DATE_DIFF(event_date, first_date, DAY) AS diff_of_day, DATE_DIFF(event_week, first_week, WEEK) AS diff_of_week FROM ( SELECT DISTINCT user_pseudo_id, DATE_TRUNC(MIN(event_date) OVER(PARTITION BY user_pseudo_id), WEEK(MONDAY)) AS first_week, event_date, DATE_TRUNC(event_date, WEEK(MONDAY)) AS event_week FROM base ) ), user_cnt_and_diff AS( SELECT diff_of_week, COUNT(DISTINCT user_pseudo_id) AS user_cnt FROM first_week_and_diff GROUP BY ALL ORDER BY diff_of_week ), retain_base AS ( SELECT *, FIRST_VALUE(user_cnt) OVER (ORDER BY diff_of_week) AS first_user_cnt FROM user_cnt_and_diff ) SELECT diff_of_week, ROUND(SAFE_DIVIDE(user_cnt, first_user_cnt), 2) AS retention FROM retain_base과제. 월별 리텐션 쿼리 작성해보기WITH base AS ( SELECT DISTINCT user_id, user_pseudo_id, event_name, DATE(DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul')) AS event_date, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime FROM advanced.app_logs WHERE event_date BETWEEN "2022-08-01" AND "2022-11-03" ), first_month_and_diff AS( SELECT *, -- DATE_DIFF(event_date, first_date, DAY) AS diff_of_day, -- DATE_DIFF(event_week, first_week, WEEK) AS diff_of_week DATE_DIFF(event_month, first_month, MONTH) AS diff_of_month FROM ( SELECT DISTINCT user_pseudo_id, DATE_TRUNC(MIN(event_date) OVER(PARTITION BY user_pseudo_id), MONTH) AS first_month, event_date, DATE_TRUNC(event_date, MONTH) AS event_month FROM base ) ), user_cnt_and_diff AS( SELECT diff_of_month, COUNT(DISTINCT user_pseudo_id) AS user_cnt FROM first_month_and_diff GROUP BY ALL ORDER BY diff_of_month ), retain_base AS ( SELECT *, FIRST_VALUE(user_cnt) OVER (ORDER BY diff_of_month) AS first_user_cnt FROM user_cnt_and_diff ) SELECT diff_of_month, user_cnt SAFE_DIVIDE(user_cnt, first_user_cnt) AS retention FROM retain_base 리텐션 연습문제Weekly Retention을 구하는 쿼리를 바닥부터 스스로 작성해보세요. # 답 -- Weekly Retention을 구하자! (Retention이란, 시간이 흐르면서 다시 제품을 사용하는지 측정하는 지표) -- 첫 방문 후 매주 재방문 비율(weekly retention)을 계산하자! WITH base AS ( SELECT DISTINCT ###### DATE(DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul')) AS event_date, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime, event_name, user_id, ###### user_pseudo_id FROM advanced.app_logs WHERE event_date BETWEEN "2022-08-01" AND "2023-08-31" ), event_week_and_first_week AS ( SELECT DISTINCT DATE_TRUNC(event_date, WEEK(MONDAY)) AS event_week, user_pseudo_id, DATE_TRUNC(MIN(event_date) OVER(PARTITION BY user_pseudo_id ORDER BY event_date), WEEK(MONDAY)) AS first_week FROM base ), retention_base AS ( SELECT *, FIRST_VALUE(user_cnt) OVER(ORDER BY day_of_week) AS total_user FROM( SELECT DATE_DIFF(event_week, first_week, WEEK) AS day_of_week, COUNT(DISTINCT user_pseudo_id) AS user_cnt FROM event_week_and_first_week GROUP BY ALL ) -- ORDER BY day_of_week ) SELECT day_of_week, SAFE_DIVIDE(user_cnt, total_user) AS retention FROM retention_base Retain User를 New + Current + Resurrected + Dormant User로 나누는 쿼리를 작성해보세요# 답 -- 신규 유저: 첫 활동일 기준 7일 이내 -- 기존 유저: 첫 활동일 기준 7일 이후, 마지막 활동으로부터 90일 이내 -- 휴면 유저: 마지막 활동일 이후 90일 이상 경과 -- 복귀 유저: 90일 이상 비활성화 이후 다시 돌아온 유저 WITH base AS ( SELECT DISTINCT DATE(DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul')) AS event_date, user_pseudo_id FROM advanced.app_logs --WHERE event_date BETWEEN "2022-08-01" AND "2023-08-31" ),user_first_last AS ( SELECT user_pseudo_id, MIN(event_date) AS first_date, #OVER(PARTITION BY user_pseudo_id)를 넣으면 윈도우함수사용과 GROUPBY졸 사용 비교했을 때처럼 중복행이 생긴다 MAX(event_date) AS last_date FROM base GROUP BY user_pseudo_id ), last_event_date AS ( -- 원래라면 CURRENT_DATE()로 해야하지만, 앱로그 데이터의 마지막 날로 설정. SELECT MAX(event_date) AS current_date FROM base ), user_activity AS ( -- 90일 이상 제품을 사용하지 않았다면 1, 아니면 0 SELECT user_pseudo_id, event_date, LEAD(event_date) OVER (PARTITION BY user_pseudo_id ORDER BY event_date) AS next_event_date, CASE WHEN DATE_DIFF(LEAD(event_date) OVER (PARTITION BY user_pseudo_id ORDER BY event_date), event_date, DAY) > 90 THEN 1 ELSE 0 END AS dormant_history FROM base ) -- user_types AS ( SELECT DISTINCT u.user_pseudo_id, u.first_date, u.last_date, led.current_date, us.dormant_history, CASE WHEN DATE_DIFF(led.current_date, u.last_date, DAY) > 90 THEN 'dormant_user' WHEN DATE_DIFF(u.last_date, u.first_date, DAY) <= 7 THEN 'new_user' WHEN dormant_history = 1 THEN 'resurrected_user' ELSE 'current_user' END AS user_type FROM user_first_last AS u CROSS JOIN last_event_date AS led LEFT JOIN user_activity AS us ON u.user_pseudo_id = us.user_pseudo_id주어진 데이터에서 어떤 사람들이 리텐션이 그나마 높을까요? 찾아보세요WITH base AS ( SELECT DISTINCT DATE(DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul')) AS event_date, user_pseudo_id FROM advanced.app_logs ), user_first_last AS ( SELECT user_pseudo_id, MIN(event_date) AS first_date, MAX(event_date) AS last_date FROM base GROUP BY user_pseudo_id ), last_event_date AS ( SELECT MAX(event_date) AS current_date FROM base ), user_activity AS ( SELECT user_pseudo_id, event_date, LEAD(event_date) OVER (PARTITION BY user_pseudo_id ORDER BY event_date) AS next_event_date, CASE WHEN DATE_DIFF(LEAD(event_date) OVER (PARTITION BY user_pseudo_id ORDER BY event_date), event_date, DAY) > 90 THEN 1 ELSE 0 END AS dormant_history FROM base ), user_types AS ( SELECT u.user_pseudo_id, u.first_date, u.last_date, led.current_date, MAX(us.dormant_history) AS dormant_history, CASE WHEN DATE_DIFF(led.current_date, u.last_date, DAY) > 90 THEN 'dormant_user' WHEN DATE_DIFF(u.last_date, u.first_date, DAY) <= 7 THEN 'new_user' WHEN MAX(us.dormant_history) = 1 THEN 'resurrected_user' ELSE 'current_user' END AS user_type FROM user_first_last AS u CROSS JOIN last_event_date AS led LEFT JOIN user_activity AS us ON u.user_pseudo_id = us.user_pseudo_id GROUP BY u.user_pseudo_id, u.first_date, u.last_date, led.current_date ), first_week_and_diff AS ( SELECT ut.user_type, fw.user_pseudo_id, fw.event_date, DATE_DIFF(DATE_TRUNC(fw.event_date, WEEK(MONDAY)), DATE_TRUNC(ut.first_date, WEEK(MONDAY)), WEEK) AS diff_of_week FROM base AS fw JOIN user_types AS ut ON fw.user_pseudo_id = ut.user_pseudo_id ), user_cnt_by_type_and_week AS ( SELECT user_type, diff_of_week, COUNT(DISTINCT user_pseudo_id) AS user_cnt FROM first_week_and_diff GROUP BY user_type, diff_of_week ), retention_base AS ( SELECT user_type, diff_of_week, user_cnt, FIRST_VALUE(user_cnt) OVER (PARTITION BY user_type ORDER BY diff_of_week) AS first_user_cnt FROM user_cnt_by_type_and_week ) SELECT user_type, diff_of_week, ROUND(SAFE_DIVIDE(user_cnt, first_user_cnt), 2) AS retention_rate FROM retention_base ORDER BY user_type, diff_of_week current user의 1주차 리텐션은 0.11부터 시작해서 5~6주차에는 0.15까지 오릅니다.new user의 경우 1주차까지 밖에 리텐션을 구하지 못하고, 0.06입니다.resurrected user의 경우 1주차 리텐션은 0.04부터 시작해서 7주차에는 0으로 빠르게 감소합니다.dormant user의 경우 휴면고객의 리텐션을 구하는 것이 의미가 있는지 잘 모르겠지만, 1주차 리텐션은 0.05부터 시작해서 11주차까지 0으로 감소합니다.리텐션이 그나마 높은 유저는 current user이고, 리텐션이 주마다 서서히 증가하거나 감소하는데 2주차에 오른 것으로 보아 기능 배포나 이벤트가 있지 않았을까 예상해봅니다.Core Event를 “click_payment”라고 설정하고 Weekly Retention을 구해주세요WITH base AS ( SELECT DISTINCT DATE(DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul')) AS event_date, DATETIME(TIMESTAMP_MICROS(event_timestamp), 'Asia/Seoul') AS event_datetime, event_name, user_id, user_pseudo_id FROM advanced.app_logs WHERE event_name = "click_payment" ), event_week_and_first_week AS ( SELECT DISTINCT DATE_TRUNC(event_date, WEEK(MONDAY)) AS event_week, user_pseudo_id, DATE_TRUNC(MIN(event_date) OVER(PARTITION BY user_pseudo_id ORDER BY event_date), WEEK(MONDAY)) AS first_week FROM base ), retention_base AS ( SELECT *, FIRST_VALUE(user_cnt) OVER(ORDER BY day_of_week) AS total_user FROM ( SELECT DATE_DIFF(event_week, first_week, WEEK) AS day_of_week, COUNT(DISTINCT user_pseudo_id) AS user_cnt FROM event_week_and_first_week GROUP BY day_of_week ) ) SELECT day_of_week, ROUND(SAFE_DIVIDE(user_cnt, total_user), 2) AS retention FROM retention_base ORDER BY day_of_weekapp_logs 테이블에서 event_name이 click_payment인 것만 필터 걸어서 리텐션 구하기를 진행했는데 이렇게 푸는 것이 맞을까요..?
-
해결됨Part2: 초중급 iOS 인스타그램 클론(SwiftUI, MVVM, Firebase, 2024)
13강 코드 작성 후 피드의 유저 데이터가 보이지 않는 문제
안녕하세요, 강의 잘 듣고 있습니다! 12강까지는 다른 유저의 게시물이 잘 보이고, 피드 상단 선택 시 프로필까지 잘 넘어갔었는데,13강을 끝까지 듣고 코드 작성 후 빌드를 했더니아래 화면처럼 유저의 데이터가 불러와지지 않고, 프로필로 이동도 안되며 어떤 동작도 하지 않습니다 ㅜㅜ FeedCellView에서 계속 ProfileViewModel(user: user) 을 생성하는 부분에서 문제가 되는 것 같은데,,어떻게 해결해야 할 지 모르겠습니다.아래 오류 이미지도 첨부하겠습니다. 감사합니다
-
미해결Flutter로 SNS 앱 만들기
10 게시물 화면에서 조금헷갈려서요
2:4610 게시물 화면에서제가 제대로 이해하고 있는지 알려주세요조금헷갈려서요 feedId의미:a라는 유저의 게시물에 b유저가 좋아요. 눌렀다면feedId는 b가 들어가고 feedLists의미:a라는 유저의 게시물에 b,c,d유저가 좋아요. 눌렀다면feedLists는 b,c,d가 들어간다 이렇게 이해하면 되나요
-
미해결[Bloc 응용] 실전 앱 만들기 (책 리뷰 앱) : SNS 로그인, Firebase 적용, Bloc 상태 관리, GoRouter
애뮬레이터 동작안됨과 xcode 실행안됨
설치 완료후 xcode가 떠야하는데계속 설치중만 몇십분째이고 애뮬레이터도 동작하지 않는데 어떻게 해결해야하나요?
-
미해결[왕초보편] 앱 8개를 만들면서 배우는 안드로이드 코틀린(Android Kotlin)
classpath가 없는데 어떻게 해야하나요?
classpath 부분이 안보이는데 어떻게 해야하나요??
-
미해결[Bloc 응용] 실전 앱 만들기 (책 리뷰 앱) : SNS 로그인, Firebase 적용, Bloc 상태 관리, GoRouter
기능별로 정리가 되지않아요
위가 강사님 화면이고 밑에가 제 화면인데 상단에 lib>src>app.dart뒤로기능별로 ui가 정리되지않고 initialLocation도 활성화되지않고 있어요 혹시 vscode에서 이상이 있는걸까요..?
-
미해결[Bloc 응용] 실전 앱 만들기 (책 리뷰 앱) : SNS 로그인, Firebase 적용, Bloc 상태 관리, GoRouter
임포트 자동생성
코드를 작성하다 완료하면 임포트하라는 표시가뜨고 클릭하는 단축키가 뭔가요? 저는 임포트를 따라쳐서 해당코드가 활성화가 되지않아요맨 밑줄 라우터 부분이요
-
미해결[Bloc 응용] 실전 앱 만들기 (책 리뷰 앱) : SNS 로그인, Firebase 적용, Bloc 상태 관리, GoRouter
클래스 이름 동시 변경
클래스이름을 MyApp으로 변경했을때 해당되는 const다음 name 부분까지 MyApp으로 같이변경하는 단축키는 어떤건가요? 그리고 이렇게 임포트하는걸 바로 검색하는것도 궁금합니다
-
미해결[Bloc 응용] 실전 앱 만들기 (책 리뷰 앱) : SNS 로그인, Firebase 적용, Bloc 상태 관리, GoRouter
단축키옵션
이렇게 옵션이 뜨려면 단축키를 어떻게 설정해야하나요?
-
미해결[초급편] 안드로이드 커뮤니티 앱 만들기(Android Kotlin)
이미지 받아오는 방법?
섹션5 컨텐츠 리스트 만들기 - Glide1 강의에서원래는 이미지 소스를 서버에서 받아와야 한다고 말씀하셨는데 그게 어떤 의미인지 알 수 있을까요????
-
미해결[Bloc 응용] 실전 앱 만들기 (책 리뷰 앱) : SNS 로그인, Firebase 적용, Bloc 상태 관리, GoRouter
의존성 세팅이 끝나면
의존성세팅을 다하고 나면 저장해야하나요? 아니면 코드만 치고 넘어가도 되는걸까요?
-
해결됨[풀스택 완성] Supabase로 웹사이트 3개 클론하기 (Next.js 14)
무한 스크롤 시 화면 위치 문제
무한 스크롤 구현 중에, 스크롤을 내리면 자연스럽게 다음 페이지로 이어지는 게 아니라, 한번 아래로 내려갔다가 다시 스크롤했던 위치로 돌아옵니다. 이 문제는 어떻게 해결할 수 있을까요?
-
미해결[Bloc 응용] 실전 앱 만들기 (책 리뷰 앱) : SNS 로그인, Firebase 적용, Bloc 상태 관리, GoRouter
플러터 설치
맥에서 사용할건데 플러터 설치시 android, ios, web, desktop이렇게 네가지가 나와있는데 혹시 어떤걸로 설정해서 해야하나요? 제가 ios만 설치했는데 ios만 해도 괜찮을까요?