묻고 답해요
143만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
filter의 종류?는 model 생성 시 지정하지 않는건가요?
안녕하세요. 수업 듣던 중 질문이 생겨 여쭤봅니다. 앞선 강의에서 설명해주셨던 필터는 마치 사진촬영 어플의 필터처럼, 적용 시 변경된 결과물을 도출해주며, GIF 예시로도 보여주셨었는데요. (빨간 필터, 초록 필터; 커널과 피처맵 강의 中 도시 전경 이미지에 필터 적용 예시) 본 강의에서 드는 의문은 Conv2D 레이어를 만들 때, 필터 사이즈만 정하고 정작 해당 필터가 어떤 필터인지는 정하지 않는건가요? (사진 어플의 필터를 예로 들자면, 흑백 필터인지, 스케치 효과의 필터인지 등) 혹은 이후에 특정 크기로 만들어놓은 Feature Map에 각각 filter를 적용하는 과정을 추가로 거치게 되는건가요?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
런타임 관련 질문드립니다.
from mmdet.apis import init_detector, inference_detector import mmcv 를 할때 런타임 다시 시작을 하는데 왜 그래야 하나요..? 설치를 하게 되면 바로 실행이 되어야 한다고 생각하는데, 그렇지 않아서 문의드립니다. 또한 런타임이 어떤 역할을 하는지 알려주시면 감사하겠습니다. +) 커널과 런타임은 같은 개념인가요?
-
해결됨딥러닝 CNN 완벽 가이드 - Fundamental 편
Batch Normalization Layer 의 Training parameter 이해 관련 질문
안녕하세요? 머신러닝 완벽가이드 수강하고 CNN 으로 넘어왔네요~ 요 강의 마치고 컴퓨터 vision 쪽 강의도 수강하려고 미리미리 구매해 놓았습니다. ㅎㅎ 항상 좋은 강의 감사드립니다! Batch normalization 강의를 듣고 실습을 해 보다가 세 가지 궁금한 점이 생겨서 질문 드립니다. (아래 내용 중에서 제가 잘못이해하고 있는 부분 지적해 주시면 감사드리겠습니다. ^^;;) 아래 그림과 같이 Batch Normalization 을 포함시켜서 Model Creation 했을 때 Model Summary 를 보면 Batch Normalization layer 에도 Training paramter 가 할당되는 것을 볼 수 있는데요, 1) Batch normalization layer 의 training paramter 의 갯수는 어떤 수식(?) 에 의해서 결정되는지.. 궁금합니다. 수식을 알 수 있다면 layer 에 대한 이해를 조금 더 높일 수 있을 듯 해서 질문드리고 있습니다. 2) BN 방법이 Batch 별로 Z = (X - Xbar)/S 수식을 적용해서 얻은 평균이 0이고 표준편차가 1로 scaling 이 된 데이터들을 activation function 에 input 하는 방식인 것으로 이해가 되는데요, 각 node 나 feature point 들 중 신호가 약한 부위를 끄거나 (off), 신호가 분명한 부위를 켜는 (on) 역할을 데이터 평준화를 통해 좀 더 일관성 있게 해 주는 거라고 이해하면 될지요? (강의 중 설명에서는 오히려 noise 개념으로 어려운 학습을 하게 해서 overfit을 줄이는 역할을 한다고 해서.... 사실 일반적인 ML 에서의 표준화 개념과는 상충되는 듯 해서 이해하기 쉽지 않습니다.) 요약 드리면 Batch normalization layer 가 전 후 layer 들에게 영향 주는 물리적인 역할이 무엇인지.. 에 대한 질문입니다. Conv 와 Activation 사이에 위치한다면 Conv layer 에는 영향을 주지 않을 것이고, Activation 을 통과하는 결과에만 영향을 줄 것 같아서요. 3. '표준화' 라는 개념으로 BN layer 를 이해해 보면 왠지... 각 배치별 평균 벡터와 표준편차 벡터값 (혹은 분산-공분산 행렬) 들을 저장해 놓았다가, test data 예측시 활용할 것도 같은데요.. (마치 sklearn 의 preprocessing 모듈의 StandardScaler 클래스의 fit 메소드 처럼) 다만 매 batch 별로 표본 평균 벡터와 표본 분산공분산 행렬이 계속 달라질 것일텐데, batch 가 진행되면서 해당 통계량들을 업데이트 했다가 최종적으로 업데이트 된 통계량을 test data 예측할 때 사용하게 되는 것인지요..? 요 개념이 맞다면 대략 어떤 방식으로 weight 들을 업데이트하며 학습하게 되는지.. 개념적으로라도 이해하고 싶습니다. 다른 weight 들과 마찬가지로 결국 loss 를 줄이는 방향으로 최적화 되는 weight 들인 것인지도 궁금하구요~~ (아니면 BN 의 training parameter 들은 일종의 noise 처럼 임시로 저장은 하지만 예측 시 활용이 안되는 weight 들인 것인지요? ) 감사합니다!
-
해결됨딥러닝 CNN 완벽 가이드 - Fundamental 편
권철민 교수님 모든 강의를 다 듣고 있는 학생입니다.
안녕하세요 권철민 교수님 교수님의 모든 강의를 다 듣고 있습니다. 좋은 강의 감사합니다.첫번째 질문: 딥러닝 컴퓨터 비전 완벽가이드 초기판부터 개정판까지 수강하고 있고 동시에 CNN 완벽가이드, 파이썬 머신러닝 등 수강을 하면서 저는 늘 궁금했습니다. 제가 pyqt5를 UI디자인하고 Yolov5 모델을 트레이닝하면서 실시간 영상의 결과를 DB로 받아서 알람을 주는 스마트 CCVT 시스템을 한번 구성하고 싶어서 github에서 다른 개발자가 만든 소스도 참고하고 있습니다. 혹시 교수님께서 Github에서 잘 만들어 졌다고 fork 하시거나 추천해주실 만한 실시간 영상 오브젝트 디텍션 오픈소스가 있으신지요? 두번째: 오라클 성능 분석강의도 듣고 있는데 혹시 No SQL 쪽 강의 계속은 없으신지? 위에 부분에서 오브젝트 디텍션으로 받은 결과값을 DB로 저장하여 데이터를 시각화 하는 부분을 시스템으로 확장하고 싶어서 여쭤봅니다. 새로나온 강의도 수강신청 할겸 해서 여줘봅니다. 교수님 지식을 나누어 주셔서 감사합니다.
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
선생님, 질문이 있습니다.
선생님, 이번에 Kernel과 Filter 차이를 설명하셨는데, 제 이해가 맞는지 검토를 부탁드려도 될까요? 우리가 보통 color image는 R,G,B 총 3개의 (28,28,1) 이미지가 결합이 된 형태이니까 이를 묶어서 (28,28,3) 이렇게 표현을 하고 흑백 이미지의 경우에는 그냥 (28,28,1) 이렇게 표현하잖아요? 그렇게 되면 각각 Channel의 개수는 3,1이 되는 것이구요. 만일 11:54의 Conv2D 조건에서 Input이 RGB 이미지로 주어진다면, 0) 일단 공통적으로 Input (28,28,3)에 대한 Batch 크기는 논외로 여거두고, 1) kernel 정방행렬 한 개를 나눠서 생각해보면 크기는( 3,3,1) 이 되는데, channel 수에 맞추기 위해(RGB) 결국 (3,3,3)이 되는 것이고, 2) filter의 개수가 4개이기 때문에 이 (3,3,3) 크기를 갖는 kernel이 총 4개가 존재한다 ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ 반면 흑백 사진 (28,28,1) 의 경우 0) 공통적으로 Input (28,28,1)에 대한 Batch 크기는 논외로 여겨두고, 1) kernel 정방행렬의 크기는 일단 (3,3)으로 주어지는데 Channel 수에 맞춰야 해서 (3,3,1)이 되는 것이고, 2) filter의 수가 4개이기 때문에 (3,3,1)의 크기를 갖는 kernel이 총 4개가 존재한다 이렇게 흐름으로 나눠서 생각이 되는데 어디부터 잘못이고 어디까지 이해가 잘 되었는지 짚어주시면 감사합니다ㅜㅜ!!
-
해결됨[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
Yolo v3 Custom Dataset 결과 데이터 분석을 어떻게 해야 할 지요?
교수님 안녕하세요 . 개정되고 나서 다시 정주행 하고 있고 있습니다. 좋은 강의 감사드리고 교수님 강의들 머신러닝과 오라클 강의 또한 아주 잘 듣고 있습니다. 교수님 Yolo v3 Custom Dataset으로 학습 후 아래와 같이 텐소보드를 통한 결과 같은데 이 부분을 어떻게 해석을 하고 보완을 해야할 지 강좌 내용에는 아래와 같은 Train 에 대한 학습 Result 를 하는 내용을 아직 제가 찾지 못해서 데이터를 분석하고 이해하는 법을 알고자 이렇게 두루뭉실하게라도 여쭙니다. 감사합니다.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
올려주신 코랩 파일 그대로 실행하는데 오류가 납니다.
ImportError: /usr/local/lib/python3.7/dist-packages/mmcv/_ext.cpython-37m-x86_64-linux-gnu.so: undefined symbol: _ZN2at5sliceERKNS_6TensorElN3c108optionalIlEES5_l 런타임 다시 시작 후 실행해도 위와 같은 오류가 나옵니다.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
Mask RCNN의 config와 모델의 최종 평가에 관해 질문 드립니다.
안녕하십니까! 먼저 좋은 강의를 해 주셔서 감사드립니다. 질문 드리겠습니다. 1. Mask RCNN 학습을 위해 config파일을 불러오고 파라미터를 설정을 합니다. 그리고 inference를 하기 이해 위에서 설정 된 config를 사용을 합니다. 만약. 학습과 inference를 각각 한다면(inference를 이한 주피터 노트북을 따로 생성) inference를 하기 위해 학습때와 동일하게 config를 파일을 불러오고 파라미터를 설정하고 사용을 해야 되나요? 예를 들어 학습시에 config를 파일을 불러오고 파라미터를 설정한 config를 파일로 저장하고 inference시에 그 파일을 불러와서 사용을 할 수도 있나요? 2. Mask RCNN 학습 시에 train과 validation dataset을 구성합니다. validation으로 검증을 하면서 학습을 하고 모델을 생성합니다. 생성된 모델을 평가하기 위해서는 Test 데이터셋으로 평가하는 방법이 궁급합니다. 부탁드립니다.
-
미해결[OpenCV] 파이썬 딥러닝 영상처리 프로젝트 - 손흥민을 찾아라!
질문이 있습니다!
윈도우 환경에서 파이참 이용해서 하고 있는데 YOLO 사용해서 object detection 프로그램 작성할 때 오류가 발생합니다.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
backbone 바꾸기
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. 안녕하세요 강사님 강의 잘 듣고 있습니다. 몇가지 질문이 있어서 질문드립니다. 만약에 backbone을 바꾸고 싶으면 이와 같이 하면 되나여 ..? 백본을 바꾸난 뒤 init_cfg에있는 checkpoint도 바꾸어야 되는지 궁금합니다.
-
해결됨딥러닝 CNN 완벽 가이드 - Fundamental 편
Alexnet 구현 코드에서 BN 질문입니다
안녕하세요! 질 좋은 강의에 감사 인사부터 드립니다! 다름이 아니라 해당 강의 7:49초 부터 AlexNet 구현 코드를 설명해주시는데요! 이론적인 부분에서 원래 Alex Net이 LRN(Local Response Normalization)이 적용되지만 구현코드 상 BN을 적용하는 걸로 설명해주셨습니다! 그런데 BN layer 코드를 자세히 보니 AlexNet 구현 과정에서는 '컨볼루션 -> 활성함수 -> BN 적용' 순서로 되어 있더라구요? 물론 이 과정이 잘못되었다는 건 아닌데 보통 '컨볼루션 -> BN 적용 -> 활성함수' 과정으로 진행하는게 대부분 더 모델 최적화에 긍정적인 영향을 미친다고 알고 있어서요! 제가 AlexNet 논문까지는 확인을 안해보았지만 논문 상에서도 LRN(실습 코드에서는 BN)이 활성함수 이후에 적용되는 순서로 되어 있는지 문의드려도 될까요!?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
.pt 파일에서 .tflite로 어떻게 변환하는지 궁금합니다.
custom dataset으로 weight모델을 만들어 android에 연동을 하고자 합니다. android는 .pt이 아닌 .tflite를 사용하는데 혹시 변환하는 방법을 알수있을까요?
-
해결됨[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
안녕하세요 강사님 FC가 적용되지 않는 경우 loss관련 질문드립니다.
안녕하세요 강사님. 수업 정말 잘 듣고있습니다. 지난 CNN강의부터 쭉 공부를 해보았는데도 직접 구현해보려고 하니까 계속 두루뭉실 이해가 되지 않는 부분이 있어서 질문드립니다. 마지막 출력단이 FC의 경우 loss라는 것이 결국 1차원의 긴 벡터의 요소의 각각의 오차를 구해서 쭉 합친것 혹은 평균낸 것 이라고 이해했는데, yolo v3나, 그 외의 마지막을 convolution연산으로 바꾼 모델들은 마지막 출력이 2차원 평면(x배치수)인데, loss를 어떻게 계산하는지 궁금합니다. [질문] 2차원 각 셀 부분별로 나온 다양한 종류의 loss들을 multi loss로 통합하여, 각 셀별 오차를 구하고 = 오차가 (16x16x배치수)처럼 나오고, FC오차와 같이 결국 모든 셀(16x16)의 개별 요소들의 합을 구하는 것이 맞는지요...? 바쁘실텐데 복잡한 질문 죄송합니다. 감사합니다.
-
해결됨[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
안녕하세요 강사님, RPN 힉습관련하여 질문드립니다.
안녕하세요 강사님. 수업 항상 잘 듣고있습니다. 바쁘시겠지만.. detection 학습관련하여 계속 헷갈리는 부분 있어서.. 질문드립니다. 이번 강의 중간 부분에 faster RCNN의 문제점을 이야기 해주시면서 classification과 Bonding box rergression을 RPN 에서도 하고 뒷단의 detect부분에서도 똑같이 한다고 하셨습니다. 제가 이해하는 바로는 결국 마지막 부분에서 multi loss를 통해서 한번 역전파 시켜주는 것으로 알았는데, RPN부분에서 따로 weight 갱신이 이루어지는지요..? (inception의 auxiliary와 같은방식으로..) 아니면 FCN방식으로 9x(HW) 2x(HW)를 제안한 것 자체가 중복되는 구조라는 것인지요? >> 요약 : loss를 두번 흘려줘서 학습이 2번 이루어진다고 생각하는 것인지, 아니면 구조만 두번 중복되고 마지막 loss로 다같이 학습이 되는 것인지 궁금합니다.
-
해결됨[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
테이터 셋
안녕하세요 교수님! 이 강의에서 yolov3의 데이터셋도 ms coco데이터로 pre trained 되어있고, 추가적인 다른 데이터셋은 추가하지않은 코드인가요?
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
선생님 param 계산되는 과정에서 질문이 있습니다.
안녕하세요 선생님, param 계산되는 과정에서 질문이 있습니다. 첫번째 param인 2432는 왜 2432가 나오는지 알겠는데 두번째 param인 9248은 어떻게 9248이 나오는지 잘 모르겠습니다 ㅠㅠㅠ 2432 + (?) = 9248이 되는거 같은데.... (?)는 3*3(kernel_size) * 3(channel)*32(filters) * ? 인거같은데... 제가 직접 계산해보면 9248이 안나옵니다 ㅠㅠㅠ 2432 + (?) = 9248 여기서 ?가 뭔지 알 수 있을까요? 감사합니다!!
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
초기에 큰 LR 의 적용할시 오버피팅 문제
안녕하세요 선생님 초기에 LR을 크게 할 때 왜 overfitting인지 잘 이해가 가지 않습니다. 초기에 큰 LR을 적용할시 Weight의 급격한 변화로 지역 최적해에 빠져 과적합 가능성이 있다고 언급하십니다. (2:00~3:35쯤 설명) 그런데, 제 생각에는 지역최적해에 빠져 나오지 못 하는 경우, 충분한 학습을 하지 못하고 수렴 한 것이라 overfitting 보다는 under fitting이라고 생각되는데, 왜 overfitting인지 잘 모르겠습니다 . 항상 즐거운 강의 감사합니다 :)
-
해결됨딥러닝 CNN 완벽 가이드 - Fundamental 편
안녕하세요 교수님 이미지 제너레이터 관련 질문드립니다.
이전 강의들에서는 이미지를 증강 할 때, data_generator.fit(image_batch) data_gen_iter = data_generator.flow(image_batch) aug_image_batch = next(data_gen_iter) 제너레이터에 fit을 하고 flow으로 이터레이터를 생성하고 next로 조금 씩가져오는 것으로 이해하였습니다. 하지만 이번 강의에서는 왜 제너레이터에 fit과 next를 하지 않으시는지 궁금합니다... 또한 제너레이터가 이미지를 생성하는 것이 아니라 flow를 만들어 주고, next로 랜덤하게 적용해서 가져와 주는 것으로 이해하는 것이 맞는지요..? 감사합니다.
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
선생님 공부하다가 조금 헷갈려서 질문드립니다.
선생님 기존 프로그래밍과 머신러닝의 차이가 기존 프로그래밍은 기존의 알고리즘 수식이나 통계분석 모델을 그대로 사용하여 결과를 산출한다면, 머신러닝은 다양하고 많은 데이터를 통해 알고리즘을 학습시켜서 최적화된 모델을 통한 결과가 산출이라고 한다면.. 회귀분석모델에서 조금 헷갈리는 것이.. 기존의 통계분석의 회귀분석은 머신러닝같은 개념이었던 건지.. 기존의 통계분석인 회귀분석의 회귀계수들도 데이터에 따라 바뀌었는데.. 1:57 의 그림에서 최적의 함수를 찾는다는 부분에서 기존 통계분석의 회귀분석을 생각할 때 갑자기 헷갈려서요..ㅠ
-
해결됨딥러닝 CNN 완벽 가이드 - Fundamental 편
신경망이 깊어질수록 필터의 개수가 많아지는 이유가 있나요?
안녕하세요, 수업 잘 듣고있습니다! Conv2D의 필터 사이즈가 32, 64, 128 로 점점 커지는데, 점점 필터 사이즈가 커지는 이유가 있나요? 제 예상으로는 * 사실 32, 32, 32도 상관없지만 관례상 필터 사이즈가 커질수록 성능이 좋기 때문 => 이것도 커널 사이즈를 (3, 3) 으로 하냐 (5, 5)로 하냐의 실험적인 문제와 동일하다 또는, * 신경망이 깊어질수록 이미지의 추상적인 특징이 증가하기 때문에 이것을 담을 그릇이 커져야 한다. 이긴 합니다 또, 이것은 별개의 질문인데 너무 헷갈려서요.. 필요한 파라미터의 개수는 kernelSize * kernerSize * filters * channel 라고 하셨는데, INPUT ( None, 28, 28, 3) 이고 Conv2d (filters=32, kernel_size =(3, 3)) 이라면 파라미터 개수는 3 * 3 * 32 * 3 이+ 32 가 될것입니다! 근데 여기서 제 생각으로는, 인풋 채널이 3개긴 하지만, 인풋 채널 3개와 각각의 커널이 합성곱 되어서 나온 결과도 3개이고, 이 결과 3개를 더해서 하나의 행렬로 만들고, 각각의 결과는 모두 같은 필터와 곱해져서 나왔기 때문에 인풋 채널에 영향을 받는다는 내용이 머릿속으로 잘 이해가 안됩니다 ㅠㅠ 이부분도 도와주세요