묻고 답해요
141만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결설계독학맛비's 실전 AI HW 설계를 위한 바이블, CNN 연산 완전정복 (Verilog HDL + FPGA 를 이용한 가속기 실습)
cnn_core simulaiton
안녕하세요. 좋은 강의 감사합니다. 혹시 시뮬레이션을 윈도우 vivado 프로그램으로 볼 때 따로 방법이 있을까요?값이 high impedance(z) 혹은 x 만 들어와서 질문 드립니다! 안녕하세요 🙂[1. 질문 챕터] : eg) 몇 장, 몇 분 몇 초 쯤. or 수강생 분들이 봤을 때 어디구나?! 할 수 있게 표기 부탁 드려요.[2. 질문 내용] : eg) 질문 내용을 자유롭게 작성해주시면 되겠습니다 🙂[3. 시도했던 내용, 그렇게 생각하는 이유] : eg) 설치영상은 이렇게 시도했는데 안되더라 or 본인의 생각을 적어주세요. (실습 내용 중에 이해가 안되거나 잘못된 내용이 있는데, 이러 이러한 근거로 나는 이렇게 생각합니다.) ================ 다음 내용은 읽어보시고 지우시면 됩니다.=================질문 내용을 작성해주실 때, 위의 3단계로 제가 이해할 수 있게 작성해주시면 정확한 답변을 드릴 수 있을 것 같아요!!현업자인지라 업무때문에 답변이 늦을 수 있습니다. (길어도 만 3일 안에는 꼭 답변드리려고 노력중입니다 ㅠㅠ)강의에서 다룬 내용들의 질문들을 부탁드립니다!! (설치과정, 강의내용을 듣고 이해가 안되었던 부분들, 강의의 오류 등등)이런 질문은 부담스러워요.. (답변거부해도 양해 부탁드려요)개인 과제, 강의에서 다루지 않은 내용들의 궁금증 해소, 영상과 다른 접근방법 후 디버깅 요청, 고민 상담 등..글쓰기 에티튜드를 지켜주세요 (저 포함, 다른 수강생 분들이 함께보는 공간입니다.)서로 예의를 지키며 존중하는 문화를 만들어가요.질문글을 보고 내용을 이해할 수 있도록 남겨주시면 답변에 큰 도움이 될 것 같아요. (상세히 작성하면 더 좋아요! )먼저 유사한 질문이 있었는지 검색해보세요.잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.==================
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
옵티마이저와 경사하강법의 차이가 궁금합니다.
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 강의 내용을 질문할 경우 몇분 몇초의 내용에 대한 것인지 반드시 기재 부탁드립니다. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. 어느정도 찾아본 결과 옵티마이저는 최적의 파라미터를 찾아주는 알고리즘을 뜻한다고 합니다.그런데 제가 듣기로는 경사하강법도 비슷한 개념인 것 같습니다.그렇다면 옵티마이저 안에 경사하강법과 monentum, adagrad 등등 다 포함되는 건가요?
-
미해결설계독학맛비's 실전 AI HW 설계를 위한 바이블, CNN 연산 완전정복 (Verilog HDL + FPGA 를 이용한 가속기 실습)
zynq z7 10 parameter 크기
zynq z7 10 으로 하고 있는데 어디 크기를 4분의 1로 줄이면 될까요? 수업듣고도 생각나는 부분 건들여봤는데 안되어서 질문드립니다.*defines_cnn_core.vh 파일에서 paramter CI=3, CO=16, KX=3, KY=3 을 다음과 같이 바꾸었습니다. CI=3, CO = 12, KX = 2, KY=2이외에 다른 parameter를 건들여야하는게 맞을까요?안녕하세요 🙂[1. 질문 챕터] : eg) 몇 장, 몇 분 몇 초 쯤. or 수강생 분들이 봤을 때 어디구나?! 할 수 있게 표기 부탁 드려요.[2. 질문 내용] : eg) 질문 내용을 자유롭게 작성해주시면 되겠습니다 🙂[3. 시도했던 내용, 그렇게 생각하는 이유] : eg) 설치영상은 이렇게 시도했는데 안되더라 or 본인의 생각을 적어주세요. (실습 내용 중에 이해가 안되거나 잘못된 내용이 있는데, 이러 이러한 근거로 나는 이렇게 생각합니다.) ================ 다음 내용은 읽어보시고 지우시면 됩니다.=================질문 내용을 작성해주실 때, 위의 3단계로 제가 이해할 수 있게 작성해주시면 정확한 답변을 드릴 수 있을 것 같아요!!현업자인지라 업무때문에 답변이 늦을 수 있습니다. (길어도 만 3일 안에는 꼭 답변드리려고 노력중입니다 ㅠㅠ)강의에서 다룬 내용들의 질문들을 부탁드립니다!! (설치과정, 강의내용을 듣고 이해가 안되었던 부분들, 강의의 오류 등등)이런 질문은 부담스러워요.. (답변거부해도 양해 부탁드려요)개인 과제, 강의에서 다루지 않은 내용들의 궁금증 해소, 영상과 다른 접근방법 후 디버깅 요청, 고민 상담 등..글쓰기 에티튜드를 지켜주세요 (저 포함, 다른 수강생 분들이 함께보는 공간입니다.)서로 예의를 지키며 존중하는 문화를 만들어가요.질문글을 보고 내용을 이해할 수 있도록 남겨주시면 답변에 큰 도움이 될 것 같아요. (상세히 작성하면 더 좋아요! )먼저 유사한 질문이 있었는지 검색해보세요.잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.==================
-
미해결설계독학맛비's 실전 AI HW 설계를 위한 바이블, CNN 연산 완전정복 (Verilog HDL + FPGA 를 이용한 가속기 실습)
ip 패키징 질문
패키징시 이런 문제들이 뜹니다. 해결책에 대해서 여쭤보고싶습니다. [IP_Flow 19-11770] Clock interface 's00_axi_aclk' has no FREQ_HZ parameter. [IP_Flow 19-2187] The Product Guide file is missing. [IP_Flow 19-11888] Component Definition 'xilinx.com:user:cnn_core_test_ci3_co32_v1_0:1.0 (cnn_core_test_ci3_co32_v1_0_v1_0)': IP description "cnn_core_test_ci3_co32_v1_0_v1_0" is not meaningful: same as name or display name
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
실습 환경
안녕하세요! 양질의 강의를 제공해주신 덕분에 잘 들으며 공부하고 있습니다.다름이 아니라 캐글 노트북 환경에서 계속 실습을 하다가 UX/UI가 변경되어서 그런지 환경이 좀 불편해서 그냥 코랩이나 주피터 환경에서 GPU로 세팅하고 실습해도 상관없을지 궁금해서 질문드립니다감사합니다. - 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 강의 내용을 질문할 경우 몇분 몇초의 내용에 대한 것인지 반드시 기재 부탁드립니다. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.
-
미해결[Pytorch] 파이토치를 활용한 딥러닝 모델 구축
이미지가 출력되지 않습니다
[Pytorch] 파이토치를 활용한 딥러닝 모델 구축섹션 5 CNN(Convolutional Neural Network, 합성곱 신경망)실습 - CNN model (LeNet-5) Mnist Dataset 분류 강의 중15분 15초 부분 code 실행 시 이미지가 출력되지 않습니다.local(jupyter notebook) 에서도 online(colab) 에서도모두 출려되지 않습니다. 어떻게 하면 되는지요?
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
입력 이미지 크기
안녕하세요.좋은 강의 잘 듣고 있습니다! 중간에 궁금한 점이 생겨서 질문 남깁니다. 현재, 사전 학습된 모델의 가중치를 불러와서 파인 튜닝을 진행하고 있습니다. 이 과정에서 입력 이미지 크기에 따라 실험을 진행중인데, VGG16의 입력 이미지 크기는 기본값이 224x224로 알고 있습니다. 만약, 제가 가진 데이터가 128x128의 형태를 띄고 있는 이미지라면, input_size를 128x128로 구성해줘도 기존의 사전 학습된 가중치를 불러와 쓸 수 있지 않나요? 기존의 DNN과 달리 CNN 모델들은 필터에 가중치를 적용하여 계산하므로 입력 이미지 크기에 상관없이 사전 학습된 가중치를 불러와 사용할 수 있다고 생각합니다. 제가 생각한게 맞는지 궁금해 질문 남깁니다. 감사합니다. 또한, 만약 제 생각이 틀리다면 위와 같이 128x128 이미지를 입력 사이즈로 주었을 때, 모델은 이를 어떻게 224x224로 만들어 학습하는지 궁금합니다. 감사합니다.
-
해결됨설계독학맛비's 실전 AI HW 설계를 위한 바이블, CNN 연산 완전정복 (Verilog HDL + FPGA 를 이용한 가속기 실습)
Image 인식 가속 모델을 설계하려면
안녕하세요. 좋은 강의 감사드립니다. 강의를 모두 수강하고 얻은 지식들을 기반으로 Application을 만들고 싶어 가장 간단한 LeNet-5 모델 연산을 가속하여 Image 인식을 해보고자 합니다. 진행 중 궁금한 점이 있어 질문드립니다. 강의 내에서 AXI Protocol을 사용하여 FPGA의 PS 부분으로 Ref_C 부분을 연산하셨고 PL 부분으로 Weight 값, Feature Map 값 등을 FPGA에 입력해주신 것으로 이해했습니다. 제가 이해한 부분이 맞는걸까요?만약 맞다면 AXI Protocol을 통해 MNIST 데이터셋 등을 넣어주는 과정이 있어야 Image 인식이 될 것 같다는 생각이 드는데 AXI Protocol에 대한 지식을 얻기 위해서는 맛비님의 어떤 강의들을 수강하면 될까요?강의 내에서 제공해주신 Lab Project 코드로 Implementation 결과는 FPGA의 Resource가 대략 7-80% 사용하는 것으로 보여졌습니다. 이게 한 Layer에 대해 그리고 Activation Function이 구현 되지 않았음에도 꽤 많은 HW Resource를 사용하는 것 같은데 강의에서 사용하신 ZYBO Z7-20으로는 하나의 모델 전체 연산을 하기에는 Resource가 부족할까요? 아니면 Pipelining이 되어 있기 때문에 크게 상관이 없을까요?좋은 강의 제공해주심에 감사드립니다!
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
9-2 fully connected NN
여기서 네트워크를 구성할 때 맨 마지막에 sigmoid를 태운 후에 마지막에 또 Softmax를 태우는데, 이렇게 할 거면 애초부터 네트워크의 마지막단을 sigmoid가 아닌 softmax를 태우면 되는 거 아닌가요?왜 sigmoid를 거친 후에 softmax를 태워야 하는 것인지 알 수 있을까요?
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
데이터 증강
안녕하세요.먼저 좋은 강의 감사합니다. 강의를 듣는 중에 궁금한 점이 몇가지 생겨 질문 남깁니다.이미지 증강 시, 증강 기법을 너무 많이 적용해도 오히려 성능이 떨어지며, 성능을 봐가면서 기법을 선택해야하는 걸로 알고 있습니다. 근데, 어떤 기법이 적절한지 알지 못하는 상황에서 어떻게 탐색해야할까요? 하나씩 적용하고 성능을 보기에는 기법이 너무 다양해서요배치마다 증강 기법을 적용하는 방식으로 진행중인데, 성능이 계속 이전 대비 떨어지는 현상을 보입니다. 확률을 만져줘야 하나요?(현재 0.5)이미지 증강을 사전에 하여 학습 데이터를 늘리는 사람들도 있던데, 이 사람들은 어떤 의도로 그러시는건지 궁금합니다.감사합니다.
-
해결됨설계독학맛비's 실전 AI HW 설계를 위한 바이블, CNN 연산 완전정복 (Verilog HDL + FPGA 를 이용한 가속기 실습)
이 강의 수강을 위해 fpga 구입이 필요할까요?
설계독학맛비 지식공유자님, 안녕하세요!인프런 운영 매니저 자미라고 합니다.고객센터 통해서, 예비 수강생의 질문이 들어와 제가 대신 여쭤봅니다. 강의 구매 전으로 아래 내용이 필요한 지 여쭤보셨어요. [ 질문 ]hw가속기 강의를 듣기전에 지금 fpga 구입을 해야하는지 궁금하여 문의 드립니다.학교에서 zynq보드랑 fpga보드가 있는데 ps영역도 사용해야하므로, zynq보드를 사용해야할것같은데 저희가 따로 zybo를 구입해야하는지 궁금합니다. 만약 zynq(zedboard)보드로 이용이 가능한지 혹은 외부소자도 따로 구입을 해야하는지 궁금하여 문의글 남깁니다. 감사합니다.+) 세 개 zynq, zybo arty 세 개 중에 추천해주신다면 감사합니다.이라는 내용에 대해 질문해주셔서, 이 부분에 대해 강사님께서 확인 후 답변 남겨주시면 제가 전달해드리도록 하겠습니다.참고로, 저희가 제공하는 [수강 전 문의하기] 라는 기능을 통한다면 수강생이 바로 질문하실 수 있는데요!이 강의는 그 기능을 제공하고 있지 않아 제가 대신 질문을 통해 남기는 점 양해해 주시길 바랍니다. 😃 항상 좋은 지식 나누어 주셔서 감사드립니다.
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
Mini-batch Gradient Descent computation time 질문
안녕하세요 선생님시간과 체력이 더 많았으면 좋겠다는 생각이 들 정도로 강의를 너무 재밌게 보고 있습니다Mini batch Gradient Descent 이론 편에서 Mini batch Size에 비례하지 않는다는 설명을 보았는데요.물론 병렬처리를 하기 때문에 정비례하지 않겠지만 GPU에 올릴 수 있는 최대 데이터양이 100개라고 가정한다면 미니배치를 200, 300, .. 이런 식으로 키운다면 미니 배치크기에 따라 비례하는 것은 맞지 않나요?혹시 제가 잘못 생각하고 있다면 말씀해주세요 감사합니다!
-
미해결설계독학맛비's 실전 AI HW 설계를 위한 바이블, CNN 연산 완전정복 (Verilog HDL + FPGA 를 이용한 가속기 실습)
혹시 AI 관련 강의도 Zybo Board가 필요한가요?
혹시 AI 관련 강의도 Zybo Board가 필요한가요?
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
Huber Loss에 대한 질문
안녕하세요?: 선생님강의 정말 재밌게 잘 보고 있습니다.강의 내용 중에 Huber Loss는 전미분이 한 번밖에 되지 않는다는 단점을 언급해주셨는데요Gradient Descent를 적용할 때는 weight에 대한 편미분만 적용하기 때문에 역전파 시에는 무관한 거 아닐까요?따라서 Epoch를 2 이상의 숫자를 두고 학습하는데 전혀 지장이 없는 거 아닌가요?왜 전미분이 1번만 된다는 게 단점이 된다는 것인지 이해가 잘 되지 않습니다.
-
미해결설계독학맛비's 실전 AI HW 설계를 위한 바이블, CNN 연산 완전정복 (Verilog HDL + FPGA 를 이용한 가속기 실습)
cnn_kernel.v 코드질문입니다.
안녕하세요 맛비님 강의 잘 보고있습니다.🙂[1. 질문 챕터] : lab2 cnn설계 rtl 중 cnn_kernel 부분에 궁금한 점이 있어서 질문드리게됐습니다. [2. 질문 내용] : eg) 질문 내용을 자유롭게 작성해주시면 되겠습니다 🙂맛비님 솔루션 코드 부분인데,acc_idx가 +1 되는건 1cycle이 지나고 아닌가요?always @(*) begin으로 시작해서 acc_kernel을 0으로 초기화 해주셨고그 아래줄에 r_mul의 인덱스에 해당하는 부분을 for문으로 loop를 돌면서 acc_kernel의 각 인덱스에 값을 할당하는 걸로 보이는데 clk edge 마다 acc_kernel을 0으로 초기화해주는데 아래 for문이 무슨 의미가 있나 싶어 질문하게되었습니다. [3. 시도했던 내용, 그렇게 생각하는 이유] : eg) 설치영상은 이렇게 시도했는데 안되더라 or 본인의 생각을 적어주세요. (실습 내용 중에 이해가 안되거나 잘못된 내용이 있는데, 이러 이러한 근거로 나는 이렇게 생각합니다.) ================ 다음 내용은 읽어보시고 지우시면 됩니다.=================질문 내용을 작성해주실 때, 위의 3단계로 제가 이해할 수 있게 작성해주시면 정확한 답변을 드릴 수 있을 것 같아요!!현업자인지라 업무때문에 답변이 늦을 수 있습니다. (길어도 만 3일 안에는 꼭 답변드리려고 노력중입니다 ㅠㅠ)강의에서 다룬 내용들의 질문들을 부탁드립니다!! (설치과정, 강의내용을 듣고 이해가 안되었던 부분들, 강의의 오류 등등)이런 질문은 부담스러워요.. (답변거부해도 양해 부탁드려요)개인 과제, 강의에서 다루지 않은 내용들의 궁금증 해소, 영상과 다른 접근방법 후 디버깅 요청, 고민 상담 등..글쓰기 에티튜드를 지켜주세요 (저 포함, 다른 수강생 분들이 함께보는 공간입니다.)서로 예의를 지키며 존중하는 문화를 만들어가요.질문글을 보고 내용을 이해할 수 있도록 남겨주시면 답변에 큰 도움이 될 것 같아요. (상세히 작성하면 더 좋아요! )먼저 유사한 질문이 있었는지 검색해보세요.잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.==================
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
Batch size 가 극단적으로 작은 경우 (예를들어 batch_size =1) Normalization 적용 방안
강사님, 본 강의 들으면서 정말 많은 도움을 받고 있습니다. normalization 에 대해서 이렇게 상세하게 설명해 준 온라인 강의는 본 적이 없네요 🙂 CNN 을 기반으로 하되 모델 파라메터도 엄청 크고, 데이터셋 크기도 매우 큰 경우, 예를 들어 3D Unet 을 구성해서 3차원의 고해상도 (256 x 256 x 256) 이미지를 input 과 output 으로 사용하다보니 GPU 메모리를 너무 많이 잡아먹어서 batch 에 복수의 샘플을 적용하지 못하고 하나의 batch 에 단일 샘플만 적용하는 경우를 study 하고 있는데요, BatchNormalization 을 적용했을 경우 오히려 학습이 잘 안 되는 것 같아서 Normalization layer 를 야예 제거한 후 모델 학습 진행 중이었습니다. 경험적으로 했던 것이었지만 본 강의를 보다 보니 그 이유가 조금 이해가 되기도 하는데요, 이와 같이 batch size 가 극단적으로 작은 경우에 Normalization layer 을 적용 안하는게 더 좋을 수 있나요? 혹은 설명해 주신 table 에 나와 있는 것 처럼 Group Normalization layer 나 Instance Normalization을 적용하는 것이 개념적으로 더 나은 방법일까요? (설명을 들었을 때는 Group Normalization 을 적용하는 것이 필요한 상황으로 이해가 되기도 하는데.. 제가 이해한 것이 맞는지 확인 부탁드립니다 ^^;) 그리고 Group Normalization 에서 "Group" 의 의미가 무엇인지 잘 와닿지가 않아서 (Batch 나 Width, Height, Sample Number 이외에 그룹이 될 수 있는 경우가 무엇인지가 잘 이해가 되지 않습니다.) ... 요 부분에 대해서 좀 더 설명해 주시면 감사드리겠습니다!
-
미해결파이썬을 활용한 머신러닝 딥러닝 입문
섹션9 First Autoencoder 인코더, 디코더 모델 생성 오류 해결 방법
강의 14분쯤에서 모델을 변경하는 부분입니다.케라스가 업데이트 된 건지는 잘 모르겠지만 아래 부분에서 시퀀셜 모델이 레이어를 단일 값으로 받을 수 없어 에러가 납니다.encoder = Sequential(Dense(2, input_shape=(3, ))) decoder = Sequential(Dense(3, input_shape=(2, ))) autoencoder = Sequential([encoder, decoder]) autoencoder.summary()아래 처럼 괄호로 감싸 리스트로 넘기면 해결됩니다.encoder = Sequential([Dense(2, input_shape=(3, ))]) decoder = Sequential([Dense(3, input_shape=(2, ))]) autoencoder = Sequential([encoder, decoder]) autoencoder.summary()
-
미해결
Yolov9의 백본 바꾸기 Resnet50으로
https://github.com/WongKinYiu/yolov9/tree/main욜로에서 models.yolo.py나 models.detect.custon.yaml을 제작해 pth로 저장하고자합니다..기존 욜로백본 yolov9.yaml을 수정해도 상관없고, 새로 얌파일을 추가해도 상관은 없는데, 전혀 갈피가 안잡혀서 도움 요청드립니다. 사실 백본을 바꾸기보단 파이토치로 새로 짜보려했는데, 제가 그냥 학습에서 엔지니어링으로 옵션 건드는건 했어도, 아예 레이어 설계하거나 저장하도록 만들어본 적이 없어서 계속 헷갈리네요.. 지금은 프로젝트 코드 다 엎어버렸습니다.
-
미해결TensorFlow Object Detection API 가이드 Part1 - 코드 10줄 수정으로 물체검출하기
버전 오류 23.05파일 포함.
2023 05 버전 해도 오류 납니다. 그리고 4강을 먼저 공부하고 싶어서 해봤는데 버전 오류 나느거 같은데 새로운 버전으로 수정된 강의가 필요합니다----------------------------------import matplotlib import matplotlib.pyplot as plt import io import scipy.misc import numpy as np from six import BytesIO from PIL import Image, ImageDraw, ImageFont import tensorflow as tf from object_detection.utils import label_map_util from object_detection.utils import config_util from object_detection.utils import visualization_utils as viz_utils from object_detection.builders import model_builder %matplotlib inline-------------------------------/usr/local/lib/python3.10/dist-packages/numpy/_core/_dtype.py:106: FutureWarning: In the future np.bool will be defined as the corresponding NumPy scalar. if dtype.type == np.bool: /usr/local/lib/python3.10/dist-packages/numpy/_core/_dtype.py:106: FutureWarning: In the future np.bool will be defined as the corresponding NumPy scalar. if dtype.type == np.bool: --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-6-49156a41fe80> in <cell line: 15>() 13 from object_detection.utils import config_util 14 from object_detection.utils import visualization_utils as viz_utils ---> 15 from object_detection.builders import model_builder 16 17 get_ipython().run_line_magic('matplotlib', 'inline') 23 frames/usr/local/lib/python3.10/dist-packages/scipy/interpolate/_fitpack_impl.py in <module> 101 102 _parcur_cache = {'t': array([], float), 'wrk': array([], float), --> 103 'iwrk': array([], dfitpack_int), 'u': array([], float), 104 'ub': 0, 'ue': 1} 105 TypeError:
-
해결됨딥러닝 이론 + PyTorch 실무 완전 정복
Normalization 질문
안녕하세요, 수업 설명 감사드립니다. cnn이 아닌 일반적인 fully connected NN (multi-layer perceptron) 에서 혹시 batch/instance/layer normalization 을 어떻게 계산하는지 설명을 부탁드려도 될까요 (그림으로 표현해 주시면 더 좋을거 같습니다.)MLP에서라면 small c가 특정 hidden layer의 node/unit에 대응될거 같고 large C가 layer 전체를 표현할거 같은데, H,W는 무엇인지 이해가 잘 되지 않습니다. 특히, MLP에서 instance normalization의 평균/분산을 구할 수가 있을지 궁금합니다 (단일 값 하나일거 같은데..)강사님께서는 어떻게 생각하시는지 알려주시면 감사드리며, 제가 잘못 이해한 부분이 있으면 코멘트 부탁드리겠습니다. 추가로 하나만 더 질문드리고 싶습니다.강의안에서 x_nhwc는 벡터일까요? 아니면 scalar 값일까요? Normalization의 경우에 feature간 (예, 인풋 변수) 평균도 구하는지, element-wise로 구하는지 궁금해서 여쭤봅니다.바쁘실텐데 시간내주셔서 미리 감사드립니다.