해결됨
딥러닝 CNN 완벽 가이드 - Fundamental 편
target_size 인수에 대한 질문
안녕하세요? 항상 좋은 강의 감사드립니다.
CNN 을 여러가지 소스로 공부하고 있었지만 중간중간 막히는 부분이 많았었는데, 본 강의를 들으며 하나씩 뚫리는 기분이 듭니다.
ImageDataGenerator 인스턴스의 flow_from_directory 메소드 에서 사용되는 target_size 인수에 대한 질문입니다.
본 기능을 통해 variety 한 이미지 손쉽게 사이즈들을 단일 사이즈로 통일시켜서 모델에 input 시킬 수 있을 듯 한데요,
예를 들어 input 이미지가 256 X 1024 등과 같이 세로로 wide 하게 찍은 사진인 경우도 224 X224 로 짜부해서 강제로 맞추는 방법인 것으로 이해하면 되는지.. 문의드립니다.
만약 그렇다면 그 방법 자체가 agumentation 이 적용된 것과 같은 효과가 되는 것은 아닌지요..? 이미지가 왜곡되어 학습을 어렵게 한다는 측면에서는 over fit 에 유리한 부분도 있겠지만 사진의 특징을 잡아내는데 어려움을 주게 되고, 모델 성능에 한계를 주는 요인이 될 수 있지 않을까 싶어서요
아직은 잘은 모르고... 개념적으로만 들은 keyword 이지만, segmentation 과 같은 방법으로 전체 이미지 중에서도 관심을 가지는 특정 부분을 잡아낸 이후에 target_size=(224, 224) 와 같이 설정하는 방법이 예측성능 측면에서는 더 좋을 것 같기는 한데요... 제가 이해한 것이 맞을지 문의드립니다.