🖤인프런만의 100% 블프 이벤트🖤
🎁100% 환급+할인+당첨 가능한 인프런 블프 구경오세요!
141만명의 커뮤니티!! 함께 토론해봐요.
강사님, 좋은 강의 그리고 좋은 답변 항상 감사드립니다. 규제가 들어가는 선형회귀 방법과 통계적 접근 방법에서의 회귀분석 간의 차이를 이해해 보고자 질문을 드리고 있습니다. 1. Ridge & 데이터 표준화 관련 질문 Ridge 는 결국 회귀계수가 상대적으로 큰 변수의 민감도를 줄임으로써 해당 변수의 값이 좀 많이 달라지는 new sample 들의 추정치에 대한 overfit risk 를 줄이는 방법으로 이해가 되는데요, 종속변수와 의 상관성을 가지는 변수 중에서도 특히 value 의 scale 이 다른 변수에 비해서 월등히 작은 독립변수의 경우 .. 예를들어 NOX 의 경우 Price 와 상관관계가 있으면서도 scale 이 다른 독립변수에 비해 월등히 작다 보니 회귀 계수가 반대급부적으로 커지다 보니 Ridge 에 의해 패널티를 받아 버리는 상황이 생기는 것이 아닐까.. 생각도 드는데요, 이런 경우에는 처음부터 Ridge 를 적용하기 보다는 회귀분석을 하기 전에 데이터 표준화나 Min-Max scaling 등을 통해서 사전처리를 한 다음에 그럼에도 불구하고 회귀 계수가 아주 큰 경우라면 Ridge 를 적용해 보는 순서로 분석하는 것이 필요하지 않을지.. 문의드립니다. (Scale 이 큰 변수가 억울하게(?) 페널티를 받는 상황이 생기지 않을까.. 생각이 들어서 입니다.^^;;) 그리고 scale 이 모두 동일한 상태인 경우일지라도, 기여도가 dominant 하게 큰 인자의 기여도를 강제적으로 낮추는 best fit 모델을 찾아내는 방법이 Ridge 라면 , 물리적으로 기여도가 높은 인자에 대한 페널티가 주어짐으로 인해 모델 성능 (R2 나 MSE 기준 ) 이 저하될 가능성이 있는 것은 아닐지.. 도 문의드립니다. 2. Lasso vs. Stepwize 비교 질문 Lasso 을 적용하면 결국 불필요한 변수의 회귀계수를 0으로 만들어 해당 변수를 제외시키는 결과를 얻게 되는데요, 통계적 회귀분석 방법 중 p-value 등을 기준으로 변수를 포함했다 제외했다 해 가면서 adjusted R2 value 등을 극대화하면서도 유의성이 떨어지는 변수들을 오차항에 모두 pooling 시키는 stepwise 방법이 결국 Lasso 와 유사한 방법이라고 이해하면 될지.. 문의 드립니다.