์ธํ”„๋Ÿฐ ์˜๋ฌธ ๋ธŒ๋žœ๋“œ ๋กœ๊ณ 
์ธํ”„๋Ÿฐ ์˜๋ฌธ ๋ธŒ๋žœ๋“œ ๋กœ๊ณ 

Advanced concepts for Deep learning

์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹ ํŠธ๋ Œ๋“œ๋ฅผ ๋”ฐ๋ผ์žก์„ ์ˆ˜ ์žˆ๋„๋ก, ๋”ฅ๋Ÿฌ๋‹์˜ ํš๊ธฐ์ ์ธ ์ง„๋ณด ๊ณผ์ • ๋งฅ๋ฝ์— ๋Œ€ํ•ด์„œ ์•Œ์•„๋ด…๋‹ˆ๋‹ค.

Thumbnail

์ค‘๊ธ‰์ž๋ฅผ ์œ„ํ•ด ์ค€๋น„ํ•œ
[๋”ฅ๋Ÿฌ๋‹ ยท ๋จธ์‹ ๋Ÿฌ๋‹, ๊ฐœ๋…์ •๋ฆฌ] ๊ฐ•์˜์ž…๋‹ˆ๋‹ค.

์ด๋Ÿฐ ๊ฑธ ๋ฐฐ์šธ ์ˆ˜ ์žˆ์–ด์š”

  • ๋”ฅ๋Ÿฌ๋‹์—์„œ์˜ 'ํŠธ๋ Œ๋“œ' ๊ฐœ๋…

  • ๋”ฅ๋Ÿฌ๋‹์ด ์–ด์งธ์„œ ํ˜„๋Œ€์— ์ด๋Ÿฐ ํ˜•ํƒœ๋กœ ๋‚˜์˜จ ๊ฒƒ์ธ์ง€, '์—ฐ๊ตฌ ๋งฅ๋ฝ'์— ๋Œ€ํ•œ ์ดํ•ด

Advanced concepts for Deep learning

"SOTA ๋…ผ๋ฌธ๊นŒ์ง€ ๋ดค๋Š”๋ฐ ์ด์ œ ๋ญํ•˜์ฃ ?"

"Tensorflow๋ฅผ ์จ๋ณด์…จ๋‹ค๊ณ ์š”? ์ œ 16์‚ด ๋”ธ๋„ Tensorflow๋กœ ๋จธ์‹  ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๋งŒ๋“ค์ค„ ์•Œ์ฃ ."

"๊ตญ์ œํ•™์ˆ ๋Œ€ํšŒ ๋ฐœํ‘œ๋ฅผ ๋“ค์–ด๋ณด๋ผ๊ณ ์š”? ๊ทธ๊ฑธ ๋„๋Œ€์ฒด ์–ด๋–ป๊ฒŒ?"

์ฐจ์ด์˜ ํ•ต์‹ฌ์€ ๋ฐ”๋กœ "๋”ฅ๋Ÿฌ๋‹ ์—ฐ๊ตฌ์— ๋Œ€ํ•œ Follow-up ๋Šฅ๋ ฅ"

์ œ์•„๋ฌด๋ฆฌ ๋”ฅ๋Ÿฌ๋‹ ์—ฐ๊ตฌ๊ฐ€ ๋งค์šฐ ๋น ๋ฅด๊ฒŒ ๋ฐœ์ „ํ•œ๋‹ค ํ•ด๋„, ์ตœ์‹  ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์— ์ •์˜๋œ ๋ฌธ์ œ๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฐ ๋ฌธ์ œ๋“ค์„ ํ…Œ๋งˆ๋ณ„๋กœ ์ž˜ ์ดํ•ดํ•œ๋‹ค๋ฉด, ์ตœ์‹  ์—ฐ๊ตฌ์˜ ๊ฐ€์น˜, ์˜์˜๋ฅผ ๋ฐ”๋กœ ์บ์น˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋ฒˆ ๊ฐ•์˜๋ฅผ ํ†ตํ•ด ์ตœ๊ทผ ๋”ฅ๋Ÿฌ๋‹์˜ ํš๊ธฐ์ ์ธ ์ง„๋ณด์—๋Š” ์–ด๋–ค ์ ์ด ํ•ต์‹ฌ์ด์—ˆ๋Š”์ง€, ๋˜ ํ˜„์žฌ ๋”ฅ๋Ÿฌ๋‹ ํ•™๊ณ„/์‚ฐ์—…๊ณ„์—๊ฒŒ ์ฃผ์–ด์ง„ ๋‚œ์ œ๋Š” ๋ฌด์—‡์ธ์ง€ ์ง๊ด€์ ์œผ๋กœ ์ „๋‹ฌํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.

์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”! ๐Ÿ‘‰

๋ณธ ๊ฐ•์˜๋Š” 2023๋…„๊นŒ์ง€์˜ ์—ฐ๊ตฌ ํŠธ๋ Œ๋“œ๋ฅผ ๋‹ค๋ฃจ๊ณ  ์žˆ์œผ๋ฉฐ, Generative models ์ฑ•ํ„ฐ๋ถ€ํ„ฐ ์ˆœ์ฐจ์ ์œผ๋กœ ์—…๋กœ๋“œ ์˜ˆ์ •์ž…๋‹ˆ๋‹ค.

๊ฐ•์˜ ์ปค๋ฆฌํ˜๋Ÿผ ๊ตฌ์„ฑ

Representation learning

  • Representation learning์ด ๋“ฑ์žฅํ•˜๊ฒŒ ๋œ ๋ฐฐ๊ฒฝ

  • ํ•™์Šต ๊ธฐ๋ฒ•์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ฐœ์ „์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์š”์†Œ

  • Transferability, Uniformity์™€ ๊ฐ™์€ ์ถ”์ƒ์ ์ด๊ณ  ๋‚œํ•ดํ•œ ๊ฐœ๋…์— ๋Œ€ํ•œ ์ดํ•ด


Generative models

  • Generative models์˜ ๋ฐœ์ „ ๋‹จ๊ณ„ ๋ฐ ๋‹ด๋ก ์˜ ๋ฐœ์ „ ๊ณผ์ •

  • Large Language Model์ด ๋“ฑ์žฅํ•˜๊ฒŒ ๋œ ๋ฐฐ๊ฒฝ


Knowledge in deep models

  • LLM์— ๊ณ„์†ํ•ด์„œ ์š”๊ตฌ๋˜๋Š” ๋‘ ๊ธฐ์ค€, Interpretability์™€ Knowledge์˜ ๊ตฌ๋ถ„

  • Knowledge์™€ Memory์˜ ๊ด€๊ณ„


Adversarial learning

  • Adversarial gradient์˜ ํŠน์„ฑ

  • Gradient, Representation, Model ๊ฐ ์š”์†Œ๊ฐ„์˜ adversarialํ•œ ์ƒํ˜ธ์ž‘์šฉ

์ด ๊ฐ•์˜๋ฅผ ๋งŒ๋“  ์‚ฌ๋žŒ : ์ง€์Šนํ˜„

  • ๊ฐ€์งœ์—ฐ๊ตฌ์†Œ ํ™œ๋™ ๋“ฑ ์ง€์‹๊ณต์œ ์˜ ๊ฐ€์น˜๋ฅผ ์ง€ํ–ฅํ•˜์—ฌ, ์ง๊ด€์ ์ด๋ฉด์„œ ์ •ํ™•ํ•œ ์ปจ์…‰์„ ์ „๋‹ฌํ•˜๊ณ ์ž ํ•˜๋Š” ๋‹ค์–‘ํ•œ ์„ธ๋ฏธ๋‚˜ ๊ฒฝํ—˜์„ ํ•ด์™”์Šต๋‹ˆ๋‹ค.

  • SIGUL 2024 workshop Program Committee, ACL 2023 emergency reviewer, EMNLP 2023 Invited reviewer, ์ •๋ณด๊ณผํ•™ํšŒ๋…ผ๋ฌธ์ง€ ์ถœํŒ์ด๋ ฅ ๋“ฑ ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ ๋ฐ ์‹ค๋ฌด์ด๋ ฅ์ด ์žˆ์Šต๋‹ˆ๋‹ค.

  • ์ข€ ๋” ์ƒ์„ธํ•œ ๋‚ด์šฉ์€ notion resume๋ฅผ ์ฐธ๊ณ  ๋ฐ”๋ž๋‹ˆ๋‹ค.

์ด๋Ÿฐ ๋ถ„๋“ค๊ป˜
์ถ”์ฒœ๋“œ๋ ค์š”!

ํ•™์Šต ๋Œ€์ƒ์€
๋ˆ„๊ตฌ์ผ๊นŒ์š”?

  • ๋”ฅ๋Ÿฌ๋‹ ์ตœ์ „์„ ์—์„œ ๋‹ค๋ฃจ๋Š” ์ด์Šˆ๋“ค์ด ๊ถ๊ธˆํ•˜์‹  ๋ถ„

  • ์Šฌ์Šฌ ํ•œ๊ธ€๋กœ ๊ตฌ๊ธ€๋งํ•œ ์ž๋ฃŒ๋“ค์ด ์˜์‹ฌ์Šค๋Ÿฌ์›Œ์ง€์‹œ๋Š” ๋ถ„

์„ ์ˆ˜ ์ง€์‹,
ํ•„์š”ํ• ๊นŒ์š”?

  • Stanford/MIT OCW series์ค‘ ์ตœ์†Œ ํ•œ course๋ฅผ ์ „๋ถ€ ๊ณต๋ถ€ํ•˜์‹  ๋ถ„

  • ํ˜น์€ Coursera, ์œ ๋ฐ๋ฏธ ๋“ฑ ์ „์‚ฐ ํ•™๊ต๋ฒ•์ธ์˜ ํ•™์œ„๊ณผ์ •์„ ์ด์ˆ˜ํ•˜์‹ ๋ถ„

  • ์„ ํ˜•๋Œ€์ˆ˜, ์ˆ˜๋ฆฌํ†ต๊ณ„ํ•™, ๋ฏธ์ ๋ถ„ํ•™ ์— ๋Œ€ํ•œ ๊ธฐ๋ณธ์ ์ธ ์ดํ•ด

์•ˆ๋…•ํ•˜์„ธ์š”
์ง€์Šนํ˜„์ž…๋‹ˆ๋‹ค.

1,698

๋ช…

์ˆ˜๊ฐ•์ƒ

21

๊ฐœ

์ˆ˜๊ฐ•ํ‰

4.7

์ 

๊ฐ•์˜ ํ‰์ 

3

๊ฐœ

๊ฐ•์˜

์•ˆ๋…•ํ•˜์„ธ์š”, Rivetta ์ฃผ์‹ํšŒ์‚ฌ์—์„œ Chief AI Officer๋กœ ์ผํ•˜๊ณ  ์žˆ๋Š” ์ง€์Šนํ˜„์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

์ƒ์„ธํ•œ ์†Œ๊ฐœ๋Š” ๋‹ค์Œ ๋งํฌ ์ฐธ๊ณ  ๋ฐ”๋ž๋‹ˆ๋‹ค.

https://inf.run/rzZVT

 

์ปค๋ฆฌํ˜๋Ÿผ

์ „์ฒด

17๊ฐœ โˆ™ (2์‹œ๊ฐ„ 39๋ถ„)

ํ•ด๋‹น ๊ฐ•์˜์—์„œ ์ œ๊ณต:

์ˆ˜์—…์ž๋ฃŒ
๊ฐ•์˜ ๊ฒŒ์‹œ์ผ: 
๋งˆ์ง€๋ง‰ ์—…๋ฐ์ดํŠธ์ผ: 

์ˆ˜๊ฐ•ํ‰

์•„์ง ์ถฉ๋ถ„ํ•œ ํ‰๊ฐ€๋ฅผ ๋ฐ›์ง€ ๋ชปํ•œ ๊ฐ•์˜์ž…๋‹ˆ๋‹ค.
๋ชจ๋‘์—๊ฒŒ ๋„์›€์ด ๋˜๋Š” ์ˆ˜๊ฐ•ํ‰์˜ ์ฃผ์ธ๊ณต์ด ๋˜์–ด์ฃผ์„ธ์š”!

๋ฌด๋ฃŒ