게시글
질문&답변
2024.09.02
LinearRegression() 에러입니다^^
답변 너무너무 감사합니다. 친절하고 알찬강의 고맙습니다. 교수님 행복한 하루되세요^^
- 0
- 2
- 44
질문&답변
2024.08.30
피처별 회귀계수 시각화
안녕하세요. 너무 좋은 강의 잘 듣고 있습니다.Bike Sharing Demend 예제소스 에러 질문이 있어서요..[ 로그 변환, 피처 인코딩, 모델 학습/예측/평가 ]from sklearn.model_selection import train_test_split , GridSearchCVfrom sklearn.linear_model import LinearRegression , Ridge , Lassoy_target = bike_df['count']X_features = bike_df.drop(['count'],axis=1,inplace=False)X_train, X_test, y_train, y_test = train_test_split(X_features, y_target, test_size=0.3, random_state=0)lr_reg = LinearRegression()lr_reg.fit(X_train, y_train)pred = lr_reg.predict(X_test)evaluate_regr(y_test ,pred)에러--------------------------------------------------------------------------- DTypePromotionError Traceback (most recent call last) ~\AppData\Local\Temp\ipykernel_19124\3974685920.py in 11 lr_reg = LinearRegression() 12 ---> 13 lr_reg.fit(X_train, y_train) 14 pred = lr_reg.predict(X_test) 15 D:\dev03\anaconda\lib\site-packages\sklearn\linear_model\_base.py in fit(self, X, y, sample_weight) 660 accept_sparse = False if self.positive else ["csr", "csc", "coo"] 661 --> 662 X, y = self._validate_data( 663 X, y, accept_sparse=accept_sparse, y_numeric=True, multi_output=True 664 ) D:\dev03\anaconda\lib\site-packages\sklearn\base.py in _validate_data(self, X, y, reset, validate_separately, **check_params) 579 y = check_array(y, **check_y_params) 580 else: --> 581 X, y = check_X_y(X, y, **check_params) 582 out = X, y 583 D:\dev03\anaconda\lib\site-packages\sklearn\utils\validation.py in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator) 962 raise ValueError("y cannot be None") 963 --> 964 X = check_array( 965 X, 966 accept_sparse=accept_sparse, D:\dev03\anaconda\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator) 663 664 if all(isinstance(dtype, np.dtype) for dtype in dtypes_orig): --> 665 dtype_orig = np.result_type(*dtypes_orig) 666 667 if dtype_numeric: DTypePromotionError: The DType could not be promoted by . This means that no common DType exists for the given inputs. For example they cannot be stored in a single array unless the dtype is `object`. The full list of DTypes is: (, , , , , , , , , , , , , , )
- 0
- 2
- 276