해결된 질문
작성
·
311
·
수정됨
1
안녕하세요~ 수강생입니다!
작업형2 유형을 풀다보니 문득 궁금한 점이 있어서 질문 올립니다.
만일 실전에서 회귀문제 RMSE를 묻는 문제라고 가정한다면....
모델을 아래 코드 예시와 같이 다양하게 할 수 있을텐데요..
#### 랜포를 썼을 경우
from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor(random_state=2023, max_depth=5)
model.fit(X_tr, y_tr)
pred = model.predict(X_val)
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
def rmse(y_test, y_pred):
return np.sqrt(mean_squared_error(y_test, y_pred))
# print('r2_score:', r2_score(y_val, pred))
# print('mean_absolute_error:', mean_absolute_error(y_val, pred))
# print('mean_squared_error:', mean_squared_error(y_val, pred))
# print('rmse:', rmse(y_val, pred))
#### 부스트를 썼을 경우
from xgboost import XGBRegressor
model = XGBRegressor()
model.fit(X_tr,y_tr)
pred=model.predict(X_val)
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
def rmse(y_test, y_pred):
return np.sqrt(mean_squared_error(y_test, y_pred))
# print('r2_score:', r2_score(y_val, pred))
# print('mean_absolute_error:', mean_absolute_error(y_val, pred))
# print('mean_squared_error:', mean_squared_error(y_val, pred))
# print('rmse:', rmse(y_val, pred)
예를들어 위 예시 코드 중에 랜포가 부스트보다 성능이 좋았다면,
최종 제출해야 하는 것은 아래의 코드처럼 1) 랜포나 부스트 둘중에 성능이 좋은 것을 선택, 2) 각 모델에서 하이퍼파라미터 튜닝을 해본 후에 질문의 RMSE가 성능이 제일 잘 나온 것(하이퍼파라미터 값 고정)으로 쭉 뒤에 코딩하고 제출하면 되는 건가요?
결국 1)번과 2)번의 불필요한 모델이나 평가방법은 주석 처리하거나 삭제처리
문제의 RMSE 성능을 봐야하는데 RMSE 코드를 잘모를 경우를 대비하여 sklearn.metrics에 질문의 RMSE 외에 r2_score, mean_absolute_error, mean_squared_error 값들을 한번 보는 용도인거죠?
#### 랜포를 썼을 경우
from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor(random_state=2023, max_depth=5)
model.fit(X_tr, y_tr)
pred = model.predict(X_val)
from sklearn.metrics import mean_squared_error
def rmse(y_test, y_pred):
return np.sqrt(mean_squared_error(y_test, y_pred))
# print('rmse:', rmse(y_val, pred))
선생님~ 답변 감사드립니다.
추가로 MSE를 활용한 RSME의 경우에 함수 파라미터 부분이 좀 헷갈리는데요.
아래와 같이 파라미터 y_test, y_pred를 넣고 리턴하는 함수를 만들었는데 y_true, y_pred 같이 다른 값을 넣어도 상관없는지..
이후에 아래와 같이 train_test_split 후에 검증하는 파라미터 값이 y_val, pred로 달라도 상관이 없는건가요?