BEST
인공지능

/

딥러닝 · 머신러닝

처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part4]

강사가 처음 딥러닝을 익혔을 때 실패했던 경험을 바탕으로 딥러닝 이해에 필요한 수학, 이론, 파이토치 기반 구현, 전이학습, GPT 핵심 트랜스포머까지 차근차근 익힐 수 있도록 새롭게 꾸민 강의입니다.

(4.9) 수강평 54개

수강생 1,252명

Thumbnail

초급자를 위해 준비한
[데이터 분석, 컴퓨터 비전] 강의입니다.

이런 걸
배워요!

  • 딥러닝 개념

  • ANN, DNN, CNN, RNN, LSTM 개념과 구현

  • Transfer Learning 개념과 구현

  • 최신 전이 학습과 timm, huggingface transformers 사용법

파이썬 딥러닝 입문자를 위한
차근차근 익히는 완성도 높은 강의
잔재미코딩 Dave Lee 가 만든 강의입니다

네카라쿠배도 사내 교육 강의로 선택한 강의!
본 강의는 실제 네카라쿠배 회사 중 한 곳에서 공식 파이썬 딥러닝 사내 교육 강의로 사용하고 있습니다.

데이터 분석/과학 로드맵 기반, 파이썬 딥러닝을 처음 익히는 입문자를 위한 강의입니다. 강사가 오래 전 처음 딥러닝을 익혔을 때의 실패 경험을 바탕으로 딥러닝 이해에 필요한 수학, 딥러닝 이론, 파이토치 기반 구현, 전이학습 최신 기술까지 이론과 실습을 병행하며, 어려운 딥러닝을 차근차근 익힐 수 있도록 꾸몄습니다. 

복잡한 인공지능 기술, 어디서부터 시작해야 하나요?

  • 최근 인공지능 기술은 딥러닝 기술을 익히시면 됩니다.
  • 딥러닝 기술은 다른 기술과는 달리, 바로 구현할 수 없고, 이론 이해가 필요합니다. 이론이 80% 라고 보시면 됩니다.
  • 문제는 이론을 한번에 이해하기 어려우며, 수학, 통계, 확률 지식이 필요한 부분도 있다는 점입니다.
  • 그렇다고 이론을 매우 얇게만 이해하면, 최신 딥러닝을 이해할 수 있는 사고를 기를 수 없습니다. 
  • 본 강의는 딥러닝을 처음 익힐 때, 꼭 필요한 지식과 이론을 입문 레벨에서 이해할 수 있는 깊이까지 다루었습니다.
  • 또한, 구현도 파이토치 사용법을 차근차근 다양한 예제와 문법을 익힐 수 있도록 구성하였습니다.

강사가 수차례 실패하며 느끼고 고민한 바를 고스란히 녹였습니다.

  • 딥러닝은 사실 익히기 어렵습니다!
    • 기본 이론이 수학, 통계, 확률, 머신러닝 기술까지 연결되어 있고, 분량이 상당하여,
    • 보통 딥러닝 강의는 맨 마지막에 들어서야 비로소 딥러닝 기본 코드를 구현하게 됩니다.
  • 그렇다고 기본 이론 부분을 너무 얇게 가져가면, 딥러닝 기본기를 갖추기 어렵습니다 
  • 그래서, 본 강의는 입문 레벨에서 익힐 만큼의 깊이로, 필요한 관련 지식까지 정리하며 이론을 다루면서,
  • 이론과 구현을  수시로 병행하여, 차근차근 지치지 않고, 하나씩 익힐 수 있도록 구성하였습니다

👉 결국 강의를 끝까지 들으면, '이제 나도 딥러닝 기본기는 쌓았다' 는 느낌이 자연스럽게 들 수 있도록 만들었습니다.


정리해야 하는 이론을 차근차근 정리하고, 
파이토치 설치부터, 딥러닝 코드도 하나씩 개선하여,
결국 캐글 문제 제출까지
해볼 수 있도록 꾸몄습니다

💬 딥러닝 기술을 익혀보려니, 정리해야할 부분이 너무 많더라고요!

맞습니다. 딥러닝 이론이 수학, 통계, 확률, 머신러닝과도 연결되어 있다보니, 하나를 익히더라도, 정리해야할 부분이 너무 많습니다. 이를 찾고 정리하는데만도 상당한 시간이 걸립니다. 본 강의는 처음 딥러닝을 익힐 때, 이해할 수 있는 레벨까지 최대한 정리한 강의입니다. 기존 잔재미코딩의 강의처럼, 잔재미코딩만의 스타일로, 차근차근 정리하고, 설명드립니다

이것만으로도 시간을 빠르게 줄여줄 수 있습니다! 입문 레벨에서 익힐 수 있는 깊이까지 정리합니다!

💬 딥러닝은 처음인데! 본 강의를 듣기 위해 우선 익혀야 할 기술이 무엇인가요?

기본적으로는 파이썬(Python)과 판다스(pandas), 데이터 시각화(plotly), 머신러닝 라이브러리(sklearn)를 가볍게 경험하신 분이라면 충분합니다. 딥러닝 이해에 필요한 수학을 비롯한 관련 배경 지식은 모두 본 강의에서 다룹니다.

위와 같은 기술이 부족하다면, 다음 강의와 함께 수강하시는 것을 추천드립니다.

함께 들으면 좋은 강의

우선 처음하는 파이썬 데이터 분석 (데이터 파트1) 강의를 통해 파이썬(Python)과 판다스(pandas), 데이터 시각화(plotly), 기본 탐색적 데이터 분석 기법을 익힙니다. 이후 처음하는 파이썬 머신러닝 부트캠프 강의로 학습 관련 프로세스, 기본 수학, 확률, 통계에 익숙해질 필요가 있습니다. 이를 기반으로 딥러닝 기술을 익히면, 딥러닝 이론부터, 챗GPT의 핵심 기술까지도 보다 빠르게 익힐 수 있습니다.

 

💬 저는 데이터 쪽 커리어를 생각하는 입문자인데, 어떻게 체계적으로 익힐 수 있을까요?

바로 위에서 보여드린 데이터 분석/과학 코스를 들으시면 도움이 되실 것입니다. 데이터 관련 커리어는 크게 데이터 분석가와 최근의 데이터 과학자로 볼 수 있습니다. 두 커리어는 결국 프로그래밍으로 데이터 수집, 저장, 분석, 예측 작업을 할 수 있으면 됩니다. 여기에 각 비즈니스 분야에 대한 지식(도메인 지식이라고 합니다)을 쌓으시면 경쟁력을 갖출 수 있습니다. 데이터 커리어를 위해 짧은 기간에 데이터 전과정을 체계적으로 익힐 수 있도록 데이터 분석/과학 로드맵도 제공하고 있습니다. 본 페이지 하단부에서 해당 로드맵을 확인하실 수 있습니다.

추가로, 데이터 관련 커리어와 데이터 분석/과학 전과정에 대해 상세히 설명한 영상을 만들었습니다. 해당 영상을 참고하시면, 하고자 하시는 바에 따라 혼자서도 짧은 시간에 시행착오 없이 데이터 과정을 쉽게 익히실 수 있습니다!

데이터 분석/과학 로드맵은 데이터 기술에 대한 기본기를 차곡차곡 쌓을 수 있도록, 각 강의마다 기존에 없는 커리큘럼으로 난이도까지 고려해서 만들었습니다. 수년간 많은 분들이 학습하고, 굉장히 좋은 피드백을 주셨던 검증된 강의들입니다.

8년간 온오프라인 유료 수강자 6만명의 검증!
평균 별점 4.9★ 누적 리뷰 1,300+

시간을 낭비하지 마세요. 강사가 다르면, IT강의도 다를 수 있습니다!
꼼꼼하고, 합리적인 분이라면 가능합니다.

💬 딥러닝 기술, 익히는 데 얼마나 어려운가요?

생각보다 어려운 것은 사실입니다. 하지만 차근차근 정리하면, 결국 내 것으로 만들 수 있는 기술입니다.

딥러닝을 처음 익힐 때 가장 어려움을 겪는 부분은 관련 이론을 이해하기 위한 수학, 통계, 확률을 공부하는 부분입니다. 관련 기술만 수십 년 익힌 강사님은 쉽게 설명하더라도, 익히는 사람은 오랜 시간이 걸립니다.

이 중 하나에 잘못 빠지면 끝이 없습니다. 완급 조절이 필요합니다. 한 단계씩 이해할 수 있는 부분까지 익히며, 다음 단계로 나아가면 됩니다. 본 강의는 이런 완급 조절까지 고려해서, 딥러닝 입문자가 이해할 수 있는 레벨까지 정리하였습니다. 현명한 분들은 지금 단계에서 집중할 부분에 집중합니다. 

💬 최근에는 실제 데이터 문제를 푸는 캐글 경진대회도 많던데 가능할까요?

본 강의는 다양한 구현 기법과 예제를 다루며, 실제 kaggle 문제를 제출까지 할 수 있도록, 차근차근 설명합니다.

  • 처음에는 이론과 파이토치 문법부터 시작해서
  • 단계별로 조금씩 더 개선된 코드와 예제로 나아가며
  • 최종적으로는 캐글 문제에 적용해보는 단계까지 설명하였습니다.

처음 딥러닝을 익히는 분들을 위한 마중물 역할을 해드리는 강의입니다.


처음 배운다는 생각으로, 
입문자도 짧은 시간에 딥러닝 기본기를 갖출 수 있도록! 

  • 초심자를 생각해 만든, 꼼꼼하게 정리한 자료와 예제!
  • 기본부터 현재까지 활용되는 핵심 딥러닝 기술 체크!
  • 자연스럽게 딥러닝 사고를 기를 수 있도록 구성한 커리큘럼! 
  • 대세가 된 파이썬 딥러닝, 파이토치로 직접 구현까지!

아, 나도 딥러닝할 수 있구나! 라는 느낌이 들면 정말 기쁩니다. 인류가 만든 정점의 지식, 딥러닝을 나도 이해하고 활용할 수 있구나! 이 느낌은 곧 자부심으로 바뀝니다. 첨단을 달리는 새로운 기술을 내가 할 수 있는 만큼 시도해보세요! 큰 그림으로만 봐도 확연히 다릅니다.

💾 이해하기 쉽게 요약된 자료와 코드로 학습 효과를 확실하게 높이세요!

자료와 정보는 차고 넘칩니다. 꼭 필요한 부분을 딱 이해할 수 있게끔 만든 요약 자료로 상세히 설명하는 강의를 듣고 나면, 이후에는 언제든 '아! 이런 내용이 있었는데?'라는 생각만 들면 언제든 자료만 보고 바로 이해할 수 있습니다.

관련 주제 이해를 돕는 꼭 필요한 부분만 간결하게 담았습니다.

  • 딥러닝 구현 코드 파일을 제공합니다. 테스트 코드는 코드 테스트까지 가능한 포맷(주피터 노트북 형태)으로, 기본 이론은 PDF 파일로 제공해드립니다.
  • 딥러닝 관련 PDF 자료는 이북 (ebook) 처럼 언제든 확인하실 수 있도록 제공해드립니다. (단, 관련 자료는 저작권 이슈로 복사 및 다운로드는 제한하였습니다.)

💌 하나하나 세심하게 신경쓴 강의를 만들어나갑니다.

  • '아! 진짜 다르구나!' 라고 느낄 수 있도록 고민고민해서 만든 잔재미코딩의 IT 강의 시리즈입니다. 합리적이고 서로 배려하고 좋은 인연을 맺을 수 있는 분들만 수강 부탁드립니다 😊

체계적으로 익히는
잔재미코딩 Dave Lee 의 로드맵 🔑

개발자, 데이터 분석가 및 데이터 과학자 커리어 로드맵!

웹/앱 개발부터 데이터 분석과 AI까지, 짧은 시간에 탄탄한 기본기를 쌓을 수 있는 A to Z 로드맵을 제공합니다. IT 기술은 서로 긴밀하게 연계되어 있어 이를 통합해야 웹/앱 서비스나 데이터 과학이 가능합니다. 난이도를 단계적으로 높이며 핵심 기술을 익히면, 효율적으로 학습하고 시스템과 데이터 전반을 이해하여 경쟁력 있는 개발자나 데이터 전문가로 성장할 수 있습니다. 이를 위해 각 분야의 핵심 기술을 체계적으로 정리한 로드맵을 준비했습니다.

1. 가장 빠른 데이터 전과정 로드맵

본 로드맵과 데이터 관련 커리어와 데이터 분석/과학 전과정에 대해 상세히 설명한 영상을 만들었습니다. 해당 영상을 참고하시면, 혼자서도 짧은 시간에 시행착오 없이 데이터 과정을 쉽게 익히실 수 있습니다!

잠깐! ✋
아래 로드맵을 클릭하시면 더욱 자세한 내용을 확인하실 수 있습니다. 로드맵을 한꺼번에 구매하시면 할인된 가격으로 제공됩니다! (할인율은 곧 축소될 예정입니다.)

2. 가장 빠른 풀스택 로드맵

본 로드맵과 혼자서 가장 빠르게 웹/앱 개발을 학습하고 구현하는 방법을 상세히 설명한 영상을 만들었습니다. 이 영상을 참고하시면, 짧은 시간 안에 시행착오 없이 웹/앱을 구현할 수 있습니다.

잠깐! ✋
아래 로드맵을 클릭하시면 더욱 자세한 내용을 확인하실 수 있습니다. 로드맵을 한꺼번에 구매하시면 할인된 가격으로 제공됩니다! (할인율은 곧 축소될 예정입니다.)


이런 분들께
추천드려요!

학습 대상은
누구일까요?

  • 데이터분석가로 딥러닝 개념 이해가 필요하신 분

  • 딥러닝을 처음 익히고자 하시는 분

  • 딥러닝 이해를 위해 필요한 수학, 이론, 구현까지 정리하고자 하시는 분

  • 파이토치 사용법을 익히고자 하시는 분

선수 지식,
필요할까요?

  • 파이썬

  • 처음하는 파이썬 데이터 분석 강의 선수강 추천

  • 처음하는 파이썬 머신러닝 부트캠프 강의 선수강 추천

안녕하세요
잔재미코딩 DaveLee입니다.

잔재미코딩, Dave Lee

  • About 잔재미코딩 소개 블로그 [클릭]

  • 주요 경력: 쿠팡 수석 개발 매니저/Principle Product Manager, 삼성전자 개발 매니저 (경력 약 15년)

  • 학력: 고려대 일어일문 / 연세대 컴퓨터공학 석사 (완전 짬뽕)

  • 주요 개발 이력: 삼성페이, 이커머스 검색 서비스, RTOS 컴파일러, Linux Kernel Patch for NAS

  • 저서: 리눅스 커널 프로그래밍, 리눅스 운영 체제의 이해와 개발, 누구나 쓱 읽고 싹 이해하는 IT 핵심 기술, 왕초보를 위한 파이썬 프로그래밍 입문서

  • 운영 사이트: 잔재미코딩 (http://www.fun-coding.org) [클릭]

  • 풀스택/데이터과학 관련 무료 자료를 공유하는 사이트입니다.

  • 기타: 잔재미코딩 유투브 채널 [클릭] 

    • IT 학습에 도움이 되는 팁/ 짧은 무료 강의를 공유하고자, 조금씩 시작하고 있습니다~

최신 현업과 IT 강의를 병행하며, 8년째 꾸준히 견고한 풀스택과 데이터과학 강의를 만들고 있습니다.

 

커리큘럼

전체

97개 ∙ (22시간 43분)

수업 자료

가 제공되는 강의입니다.

강의 게시일: 
마지막 업데이트일: 

수강평

아직 충분한 평가를 받지 못한 강의입니다.
모두에게 도움이 되는 수강평의 주인공이 되어주세요!