์ธํ”„๋Ÿฐ ์˜๋ฌธ ๋ธŒ๋žœ๋“œ ๋กœ๊ณ 
์ธํ”„๋Ÿฐ ์˜๋ฌธ ๋ธŒ๋žœ๋“œ ๋กœ๊ณ 
BEST

์ฐจ๋Ÿ‰ ๋ฒˆํ˜ธํŒ ์ธ์‹ ํ”„๋กœ์ ํŠธ์™€ TensorFlow๋กœ ๋ฐฐ์šฐ๋Š” ๋”ฅ๋Ÿฌ๋‹ ์˜์ƒ์ธ์‹ ์˜ฌ์ธ์›

์ฐจ๋Ÿ‰ ๋ฒˆํ˜ธํŒ ์ธ์‹ ์‹ค์ „ ํ”„๋กœ์ ํŠธ๋ฅผ ํ†ตํ•ด ๋”ฅ๋Ÿฌ๋‹/TensorFlow/์ปดํ“จํ„ฐ๋น„์ „ ๊ธฐ์ดˆ๋ถ€ํ„ฐ ์‹ค๋ฌด ์‘์šฉ๊นŒ์ง€ ์ „ ๊ณผ์ •์„ ํ•œ๋ฒˆ์— ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋Š” ์˜ฌ์ธ์› ํ˜•ํƒœ์˜ ๊ฐ•์˜์ž…๋‹ˆ๋‹ค. ๋‹ค์–‘ํ•œ ์‹ค์Šต์„ ํ†ตํ•ด Custom Dataset์— ์ตœ์‹  ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์‹ค๋ฌด ๋Šฅ๋ ฅ์„ ๊ธฐ๋ฅผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Thumbnail

์ดˆ๊ธ‰์ž๋ฅผ ์œ„ํ•ด ์ค€๋น„ํ•œ
[์ธ๊ณต์ง€๋Šฅ] ๊ฐ•์˜์ž…๋‹ˆ๋‹ค.

์ด๋Ÿฐ ๊ฑธ ๋ฐฐ์šธ ์ˆ˜ ์žˆ์–ด์š”

  • MNIST,CIFAR-10 ๋“ฑ์˜ ๊ธฐ์ดˆ ์˜ˆ์ œ๊ฐ€ ์•„๋‹Œ ๋”ฅ๋Ÿฌ๋‹ ์‹ค๋ฌด ํ”„๋กœ์ ํŠธ๋ฅผ ์ง„ํ–‰ํ•˜๋Š” ๋ฒ•

  • Custom Dataset์— ์ตœ์‹  ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์ ์šฉํ•˜๋Š” ๋ฒ•

  • ๋”ฅ๋Ÿฌ๋‹/๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ์ดˆ ๊ฐœ๋…๋ถ€ํ„ฐ ์‹ค๋ฌด ์‘์šฉ๊นŒ์ง€ ๋‹จ๊ณ„๋ณ„ ํ•™์Šต

  • ์ตœ์‹ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ๊นŠ์€ ์ดํ•ด(EfficientNet, CenterNet, EAST, ...)

  • Object Detection, Text Detection, OCR, Image Captioning, Generative Model ๋“ฑ ๋‹ค์–‘ํ•œ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ฌธ์ œ์˜์—ญ์— ์‚ฌ์šฉ๋˜๋Š” ์ตœ์‹  ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ๋“ค์˜ ์›๋ฆฌ์™€ ์‚ฌ์šฉ๋ฒ•

  • ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฒ•

๋‹ค์–‘ํ•œ ์‹ค์ „ ํ”„๋กœ์ ํŠธ์™€ ์ตœ์‹ ๋…ผ๋ฌธ ํ•™์Šต์„ ํ†ตํ•ด
๋”ฅ๋Ÿฌ๋‹/์ปดํ“จํ„ฐ๋น„์ „ ์ „๋ฌธ๊ฐ€๋กœ ๊ฑฐ๋“ญ๋‚˜๋ณด์„ธ์š”. ๐Ÿ˜€

์ˆ˜๊ฐ• ์ „ ํ™•์ธํ•ด์ฃผ์„ธ์š”!

ํ•ด๋‹น ์ปค๋ฆฌํ˜๋Ÿผ ๋ชฉ๋ก

<TensorFlow Object Detection API ๊ฐ€์ด๋“œ Part1 - ์ฝ”๋“œ 10์ค„ ์ˆ˜์ •์œผ๋กœ ๋ฌผ์ฒด ๊ฒ€์ถœํ•˜๊ธฐ> ์„น์…˜ 1

  • Object Detection ๋ฌธ์ œ์˜์—ญ ์†Œ๊ฐœ
  • Object Detection Metric - IoU, mAP
  • Object Detection Datasets โ€“ Pascal VOC, MS COCO, KITTI, Open Images

<TensorFlow Object Detection API ๊ฐ€์ด๋“œ Part1 - ์ฝ”๋“œ 10์ค„ ์ˆ˜์ •์œผ๋กœ ๋ฌผ์ฒด ๊ฒ€์ถœํ•˜๊ธฐ> ์„น์…˜ 3

  • TensorFlow Object Detection API ์†Œ๊ฐœ

<TensorFlow Object Detection API ๊ฐ€์ด๋“œ Part1 - ์ฝ”๋“œ 10์ค„ ์ˆ˜์ •์œผ๋กœ ๋ฌผ์ฒด ๊ฒ€์ถœํ•˜๊ธฐ> ์„น์…˜ 4

  • R-CNN(Regions with CNN)
  • Fast R-CNN
  • Faster R-CNN
  • Non-Maximum Suppression (NMS)
  • SSD(Single Shot MultiBox Detector)
  • RetinaNet
  • CenterNet

<TensorFlow Object Detection API ๊ฐ€์ด๋“œ Part1 - ์ฝ”๋“œ 10์ค„ ์ˆ˜์ •์œผ๋กœ ๋ฌผ์ฒด ๊ฒ€์ถœํ•˜๊ธฐ> ์„น์…˜ 5

  • Pre-Trained Model์„ ์ด์šฉํ•œ Object Detection

<TensorFlow 2.0์œผ๋กœ ๋ฐฐ์šฐ๋Š” ๋”ฅ๋Ÿฌ๋‹ ์ž…๋ฌธ์„น์…˜ 1

  • ์ธ๊ณต์ง€๋Šฅ, ๋จธ์‹ ๋Ÿฌ๋‹, ๋”ฅ๋Ÿฌ๋‹ & ์ง€๋„ ํ•™์Šต, ๋น„์ง€๋„ ํ•™์Šต, ๊ฐ•ํ™” ํ•™์Šต
  • ๋”ฅ๋Ÿฌ๋‹, ํ…์„œํ”Œ๋กœ ์‘์šฉ ๋ถ„์•ผ
  • ๊ฐ„๋žตํžˆ ์‚ดํŽด๋ณด๋Š” ๋”ฅ๋Ÿฌ๋‹์˜ ์—ญ์‚ฌ

<TensorFlow 2.0์œผ๋กœ ๋ฐฐ์šฐ๋Š” ๋”ฅ๋Ÿฌ๋‹ ์ž…๋ฌธ์„น์…˜ 3

  • ๋จธ์‹ ๋Ÿฌ๋‹์˜ ๊ธฐ๋ณธ ํ”„๋กœ์„ธ์Šค - ๊ฐ€์„ค ์ •์˜, ์†์‹คํ•จ์ˆ˜ ์ •์˜, ์ตœ์ ํ™” ์ •์˜
  • TensorFlow 2.0์„ ์ด์šฉํ•œ ์„ ํ˜• ํšŒ๊ท€(Linear Regression) ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ตฌํ˜„
  • Batch Gradient Descent, Stochastic Gradient Descent, Mini-Batch Gradient Descent
  • Training Data, Validation Data, Test Data & ์˜ค๋ฒ„ํ”ผํŒ…(Overfitting)
  • ์†Œํ”„ํŠธ๋งฅ์Šค ํšŒ๊ท€(Softmax Regression) & ํฌ๋กœ์Šค ์—”ํŠธ๋กœํ”ผ(Cross-Entropy Loss Function) & One-hot Encoding & MNIST
  • TensorFlow 2.0 ์ผ€๋ผ์Šค ์„œ๋ธŒํด๋ž˜์‹ฑ(Keras Subclassing)
  • TensorFlow 2.0๊ณผ Softmax Regression์„ ์ด์šฉํ•œ MNIST ์ˆซ์ž๋ถ„๋ฅ˜๊ธฐ ๊ตฌํ˜„

<TensorFlow 2.0์œผ๋กœ ๋ฐฐ์šฐ๋Š” ๋”ฅ๋Ÿฌ๋‹ ์ž…๋ฌธ์„น์…˜ 4

  • ๋‹ค์ธต ํผ์…‰ํŠธ๋ก  MLP
  • TensorFlow 2.0๊ณผ ANN์„ ์ด์šฉํ•œ MNIST ์ˆซ์ž๋ถ„๋ฅ˜๊ธฐ ๊ตฌํ˜„

<TensorFlow 2.0์œผ๋กœ ๋ฐฐ์šฐ๋Š” ๋”ฅ๋Ÿฌ๋‹ ์ž…๋ฌธ์„น์…˜ 5

  • ์˜คํ† ์ธ์ฝ”๋”(AutoEncoder)์˜ ๊ฐœ๋…
  • TensorFlow 2.0๊ณผ ์˜คํ† ์ธ์ฝ”๋”๋ฅผ ์ด์šฉํ•œ MNIST ๋ฐ์ดํ„ฐ ์žฌ๊ตฌ์ถ•

<TensorFlow 2.0์œผ๋กœ ๋ฐฐ์šฐ๋Š” ๋”ฅ๋Ÿฌ๋‹ ์ž…๋ฌธ์„น์…˜ 6

  • ์ปดํ“จํ„ฐ ๋น„์ „ ๋ฌธ์ œ์˜ ์–ด๋ ค์›€๊ณผ CNN ๊ธฐ๋ฐ˜ ์ปดํ“จํ„ฐ๋น„์ „ ์‹œ๋Œ€์˜ ๋„๋ž˜
  • ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง์˜ ํ•ต์‹ฌ๊ฐœ๋… - ์ปจ๋ณผ๋ฃจ์…˜(Convolution), ํ’€๋ง(Pooling)
  • TensorFlow 2.0์„ ์ด์šฉํ•œ MNIST ์ˆซ์ž๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ CNN ๊ตฌํ˜„
  • ๋“œ๋กญ์•„์›ƒ(Dropout)
  • TensorFlow 2.0์„ ์ด์šฉํ•œ CIFAR-10 ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ CNN ๊ตฌํ˜„

<TensorFlow 2.0์œผ๋กœ ๋ฐฐ์šฐ๋Š” ๋”ฅ๋Ÿฌ๋‹ ์ž…๋ฌธ์„น์…˜ 7

  • ์ˆœํ™˜์‹ ๊ฒฝ๋ง(RNN)
  • ๊ฒฝ์‚ฌ๋„ ์‚ฌ๋ผ์ง ๋ฌธ์ œ(Vanishing Gradient Problem) & LSTM & GRU
  • ์ž„๋ฒ ๋”ฉ(Embedding)์˜ ๊ฐœ๋… & Char-RNN
  • TensorFlow 2.0์„ ์ด์šฉํ•œ Char-RNN ๊ตฌํ˜„

<TensorFlow 2.0์œผ๋กœ ๋ฐฐ์šฐ๋Š” ๋”ฅ๋Ÿฌ๋‹ ์ž…๋ฌธ์„น์…˜ 8

  • tf.train.CheckpointManager API๋ฅผ ์ด์šฉํ•ด์„œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ €์žฅํ•˜๊ณ  ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
  • ํ…์„œ๋ณด๋“œ(TensorBoard)๋ฅผ ์ด์šฉํ•ด์„œ ํ•™์Šต๊ณผ์ • ์‹œ๊ฐํ™”(Visualization)ํ•˜๊ธฐ

<TensorFlow 2.0์œผ๋กœ ๋ฐฐ์šฐ๋Š” ๋”ฅ๋Ÿฌ๋‹ ์ž…๋ฌธ์„น์…˜ 9

  • ๋‹ค์–‘ํ•œ ์ปดํ“จํ„ฐ๋น„์ „ ๋ฌธ์ œ์˜์—ญ ์†Œ๊ฐœ
  • ๋‹ค์–‘ํ•œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ(NLP) ๋ฌธ์ œ์˜์—ญ ์†Œ๊ฐœ

Naver(CRAFT)์™€ Kakao(EAST)์—์„œ ์‹ค์ œ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋Š” ์ตœ์‹  ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ์‚ฌ์šฉ๋ฒ•์„ ์ตํ˜€๋ณด์„ธ์š”.

๋”ฅ๋Ÿฌ๋‹ ์ปดํ“จํ„ฐ๋น„์ „(Computer Vision) ์ „๋ฌธ๊ฐ€๊ฐ€ ๋˜๊ธฐ ์œ„ํ•œ All-in-One ๊ฐ•์˜!

  • ๋”ฅ๋Ÿฌ๋‹ ์ปดํ“จํ„ฐ๋น„์ „ ์ „๋ฌธ๊ฐ€๊ฐ€ ๋˜๊ธฐ ์œ„ํ•ด ํ•™์Šตํ•ด์•ผ ํ•˜๋Š” ๋ชจ๋“  ์š”์†Œ๋ฅผ ํ•˜๋‚˜์˜ ๊ฐ•์˜์— ์ข…ํ•ฉํ–ˆ์Šต๋‹ˆ๋‹ค.
  • ์ตœ์‹  ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ์ดํ•ด๋ฅผ ์œ„ํ•œ ํ•„์ˆ˜ ์ด๋ก  ์ง€์‹ : ๋จธ์‹ ๋Ÿฌ๋‹ ๋ฐ ๋”ฅ๋Ÿฌ๋‹์˜ ๊ธฐ์ดˆ(ANN, CNN)๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด ์ตœ์‹  ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ์›๋ฆฌ(EfficientNet, CenterNet)๊นŒ์ง€ ๋‹จ๊ณ„๋ณ„๋กœ ํ•„์š”ํ•œ ํ•„์ˆ˜ ์ด๋ก  ๋ฐ ์ง€์‹์„ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.
  • Python/TensorFlow 2.0์„ ์ด์šฉํ•œ ์ฝ”๋“œ ๊ตฌํ˜„ ๋Šฅ๋ ฅ : ํŒŒ์ด์ฌ ๋ฐ ํ…์„œํ”Œ๋กœ 2.0์„ ์ด์šฉํ•ด ์‹ค์ œ ํ”„๋กœ์ ํŠธ ์ง„ํ–‰์„ ์œ„ํ•œ ๊ตฌํ˜„ ๋Šฅ๋ ฅ์„ ๋‹จ๊ณ„๋ณ„๋กœ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.
  • Custom Dataset ์ ์šฉ์„ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์‹ค์ „ ํ”„๋กœ์ ํŠธ : MNIST ๊ฐ™์€ ๊ธฐ์ดˆ ์˜ˆ์ œ๊ฐ€ ์•„๋‹Œ, ๋‹ค์–‘ํ•œ Custom Dataset์— ์ตœ์‹  ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์‹ค์ „ ํ”„๋กœ์ ํŠธ๋ฅผ ์ง„ํ–‰ํ•ด ๋ด…๋‹ˆ๋‹ค.

์ด๋Ÿฐ ๋ถ„๋“ค๊ป˜
์ถ”์ฒœ๋“œ๋ ค์š”!

ํ•™์Šต ๋Œ€์ƒ์€
๋ˆ„๊ตฌ์ผ๊นŒ์š”?

  • ๋”ฅ๋Ÿฌ๋‹/์ปดํ“จํ„ฐ๋น„์ „์„ ์ง„์ง€ํ•˜๊ฒŒ ๊ณต๋ถ€ํ•˜๊ณ  ์‹ถ์€ ๋ชจ๋“  ๋ถ„

  • ๋”ฅ๋Ÿฌ๋‹/์ปดํ“จํ„ฐ๋น„์ „์„ ์ด์šฉํ•œ ์‹ค๋ฌด ํ”„๋กœ์ ํŠธ๋ฅผ ์ง„ํ–‰ํ•˜๊ณ  ์‹ถ์€ ๋ถ„

์„ ์ˆ˜ ์ง€์‹,
ํ•„์š”ํ• ๊นŒ์š”?

  • ๊ธฐ์ดˆ์ ์ธ Python ์ง€์‹

์•ˆ๋…•ํ•˜์„ธ์š”
AISchool์ž…๋‹ˆ๋‹ค.

8,049

๋ช…

์ˆ˜๊ฐ•์ƒ

535

๊ฐœ

์ˆ˜๊ฐ•ํ‰

342

๊ฐœ

๋‹ต๋ณ€

4.6

์ 

๊ฐ•์˜ ํ‰์ 

27

๊ฐœ

๊ฐ•์˜

๋”๋ณด๊ธฐ

์ปค๋ฆฌํ˜๋Ÿผ

์ „์ฒด

126๊ฐœ โˆ™ (20์‹œ๊ฐ„ 51๋ถ„)

ํ•ด๋‹น ๊ฐ•์˜์—์„œ ์ œ๊ณต:

์ˆ˜์—…์ž๋ฃŒ
๊ฐ•์˜ ๊ฒŒ์‹œ์ผ: 
๋งˆ์ง€๋ง‰ ์—…๋ฐ์ดํŠธ์ผ: 

์ˆ˜๊ฐ•ํ‰

์•„์ง ์ถฉ๋ถ„ํ•œ ํ‰๊ฐ€๋ฅผ ๋ฐ›์ง€ ๋ชปํ•œ ๊ฐ•์˜์ž…๋‹ˆ๋‹ค.
๋ชจ๋‘์—๊ฒŒ ๋„์›€์ด ๋˜๋Š” ์ˆ˜๊ฐ•ํ‰์˜ ์ฃผ์ธ๊ณต์ด ๋˜์–ด์ฃผ์„ธ์š”!