묻고 답해요
141만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part4]
nn.Parameter
class로 모델 만드는 설명 해주실 때, linear layer 예제 알려주실 때, 파라미터로 등록하려면 nn.Parameter()로 감싸주라고 하셨는데요, 이후의 코드들을 보면 따로 감싸주는 모습이 안보여서요.파라미터로 등록할 때 명시적으로 필요 없는 경우가 있는 건지요? 감사합니다.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
mmcv 설치 오류? 문의
안녕하세요. 계속해서 jupyter를 통해 mmdetection을 설치하려고 하는데 error가 발생하여 문의드립니다.버전은 2.x로 다운그레이드하여 설치후 진행 중입니다. [1] 현재 torch version은 1.12.0, cuda version은 113으로 torch 버전을 변경하여 사용하려고 합니다. 아래 링크로 들어가면 설치가 가능한 걸로 이해를 했습니다. https://download.openmmlab.com/mmcv/dist/cu113/torch1.12.0/index.html따라서 명령어 : python -m pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.12.0/index.html를 실행하여 진행하는데 위의 검정 화면과 같은 에러가 뜹니다. 파이썬이 여러 버전 설치되어 있을 경우의 해결책을 사용하여 명령어를 입력하였는데도 오류가 뜹니다. [2] jupyter에서 코드 실행시 ModuleNotFoundError: No module named 'mmcv._ext' 오류가 납니다.버전이 안 맞아서 생기는 오류 같은데, [1]이 근본적으로 설치가 안되어서 그러는건지, 아니면 다른 이슈인지 모르겠습니다. 감사합니다.
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
안녕하세요 교수님. fit()과 모델 생성할때 input 질문있습니다.
안녕하세요 교수님. model을 생성할때는 입력값을 만약 2차원 gray scale (크기 = 28 28)이 들어왔다면 tensor값을 받아야하니 이것을 3차원(1 28 * 28)으로 받는것을 이해했습니다.만약 RGB 이미지라면 (크기 : 28 28 3 )이 값을 그대로 받는건가요?? channel값은 임의의로 정했습니다.그렇다면 fit()함수는 x값과 y값은 numpy로 받는데 이 값을 numpy에서 tensor값으로 변경시켜주지않고 받는것일까요?? 궁금합니다
-
미해결예제로 배우는 딥러닝 자연어 처리 입문 NLP with TensorFlow - RNN부터 BERT까지
N-gram_example
colab에서 from nltk.lm.preprocessing import pad_both_ends from nltk.lm.preprocessing import flatten 이 두개가 import가 되지 않는데 해결방법이 있을까요?ImportError: cannot import name 'Sequence' from 'collections' (/usr/lib/python3.10/collections/__init__.py)
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
선생님, 강의자료 ppt는 어디서 받나요?
선생님, 강의자료 ppt 얻을 수 있나요?감사합니다.
-
미해결차량 번호판 인식 프로젝트와 TensorFlow로 배우는 딥러닝 영상인식 올인원
craft와 crnn의 사이 연결관계에 대해서
craft에서 여러글자를 하나의 단어로 인식하는것이 맞는 것인가요 번호판 커스텀 데이터를 보면 bbox 와 하나의 라벨링이 있는데 해당 라벨링에 여러 단어가 들어가있습니다. 그래서 추측하기에 원래 기본적으로 하나의 단에 하나의 bbox가 있는것인데 이번 강의에서 여러 단어를 하나의 단어로 인식하는 방식이 맞는 것인지 궁금합니다. 아니면 라벨링은 무시하는 데이터 입니까?아니면 craft가 문자 인식에 탁월한 detection model이지만, 이를 글자가 아니라 애초에 번호판 박스를 인식하는데에 쓰는 것인가요?그리고 해당 bbox를 통해 전체 이미지중 해당 되는 img를 잘라서 crnn이 받아서 글자를 recognize 하는 것이 맞는것 인지 궁금합니다
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
CityscapeDataset으로 변경 시 오류
선생님 안녕하세요 저는 현재 cityscape dataset을 바탕으로 kaggle mask_rcnn_nucleus 코드를 활용하여 segmentation을 해보려고 하고 있습니다.차량으로 활영한 스트릿뷰에서 나무와 도로를 분리해내어 온도 차이를 보고자 해당 작업을 진행 중인데요,이에 cityscape에 맞는 config 파일과 pretrained model, Cityscapedataset을 활용하려고 하고 있는데, 기존 Nucleusdataset을 Cityscapedataset으로 대체해서 코드를 돌리니 config와 계속 충돌이 있어 train을 할수가 없어 어느 부분을 수정해야할지 모르겠어서 질문드립니다.활용한 config, checkpoint 파일# config_file (/content/mmdetection/configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes.py 활용) mask_rcnn_r50_fpn_1x_cityscapes.py # checkpoint_file (cityscape웹에서 다운로드) mask_rcnn_r50_fpn_1x_cityscapes_20201211_133733-d2858245.pth https://download.openmmlab.com/mmdetection/v2.0/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes/mask_rcnn_r50_fpn_1x_cityscapes_20201211_133733-d2858245.pth1차 수정한 dataset 코드# 기존 dataset 코드 from mmdet.datasets.builder import DATASETS from mmdet.datasets.coco import CocoDataset @DATASETS.register_module(force=True) class NucleusDataset(CocoDataset): CLASSES = ['nucleus'] # 변경한 dataset 코드 # Copyright (c) OpenMMLab. All rights reserved. # Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/data/datasets/cityscapes.py # noqa # and https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/evalInstanceLevelSemanticLabeling.py # noqa from mmdet.datasets.builder import DATASETS from mmdet.datasets.coco import CocoDataset from typing import List @DATASETS.register_module() class Cityscape_Dataset_2(CocoDataset): """Dataset for Cityscapes.""" METAINFO = { 'classes': ('road', 'vegetation', 'sidewalk', 'car', 'building', 'person', 'sky', 'bicycle'), 'palette': [(128,64,128), (107,142,35), (152,251,152), (0,0,142), (70,70,70), (255,0,0), (70,130,180), (119,11,32)] } def filter_data(self) -> List[dict]: """Filter annotations according to filter_cfg. Returns: List[dict]: Filtered results. """ if self.test_mode: return self.data_list if self.filter_cfg is None: return self.data_list filter_empty_gt = self.filter_cfg.get('filter_empty_gt', False) min_size = self.filter_cfg.get('min_size', 0) # obtain images that contain annotation ids_with_ann = set(data_info['img_id'] for data_info in self.data_list) # obtain images that contain annotations of the required categories ids_in_cat = set() for i, class_id in enumerate(self.cat_ids): ids_in_cat |= set(self.cat_img_map[class_id]) # merge the image id sets of the two conditions and use the merged set # to filter out images if self.filter_empty_gt=True ids_in_cat &= ids_with_ann valid_data_infos = [] for i, data_info in enumerate(self.data_list): img_id = data_info['img_id'] width = data_info['width'] height = data_info['height'] all_is_crowd = all([ instance['ignore_flag'] == 1 for instance in data_info['instances'] ]) if filter_empty_gt and (img_id not in ids_in_cat or all_is_crowd): continue if min(width, height) >= min_size: valid_data_infos.append(data_info) return valid_data_infos1차 수정한 코드로 시도한 train 시 오류from mmdet.datasets import build_dataset from mmdet.models import build_detector from mmdet.apis import train_detector # train, valid 용 Dataset 생성. datasets_train = [build_dataset(cfg.data.train)] datasets_val = [build_dataset(cfg.data.val)] --------- TypeError Traceback (most recent call last) /usr/local/lib/python3.10/dist-packages/mmcv/utils/registry.py in build_from_cfg(cfg, registry, default_args) 68 try: ---> 69 return obj_cls(**args) 70 except Exception as e: TypeError: CustomDataset.__init__() got an unexpected keyword argument 'times' During handling of the above exception, another exception occurred: TypeError Traceback (most recent call last) 2 frames /usr/local/lib/python3.10/dist-packages/mmcv/utils/registry.py in build_from_cfg(cfg, registry, default_args) 70 except Exception as e: 71 # Normal TypeError does not print class name. ---> 72 raise type(e)(f'{obj_cls.__name__}: {e}') 73 74 TypeError: Cityscape_Dataset_2: CustomDataset.__init__() got an unexpected keyword argument 'times'2차 수정한 코드 (chatGPT의 도움)도 또 다른 오류 뜸@DATASETS.register_module() class Cityscape_Dataset_times(CocoDataset): """Dataset for Cityscapes.""" METAINFO = { 'classes': ('road', 'vegetation', 'sidewalk', 'car', 'building', 'person', 'sky', 'bicycle'), 'palette': [(128,64,128), (107,142,35), (152,251,152), (0,0,142), (70,70,70), (255,0,0), (70,130,180), (119,11,32)] } def __init__(self, *args, times=1, **kwargs): self.times = times super().__init__(*args, **kwargs) def __getitem__(self, idx): # Get the real index by considering the 'times' argument. idx = idx % len(self.data_list) return super().__getitem__(idx) def __len__(self): # The length is the original length times the 'times' argument. return len(self.data_list) * self.times ..이하 동일from mmdet.datasets import build_dataset from mmdet.models import build_detector from mmdet.apis import train_detector # train, valid 용 Dataset 생성. datasets_train = [build_dataset(cfg.data.train)] datasets_val = [build_dataset(cfg.data.val)] --------- TypeError Traceback (most recent call last) /usr/local/lib/python3.10/dist-packages/mmcv/utils/registry.py in build_from_cfg(cfg, registry, default_args) 68 try: ---> 69 return obj_cls(**args) 70 except Exception as e: 3 frames TypeError: CustomDataset.__init__() got an unexpected keyword argument 'dataset' During handling of the above exception, another exception occurred: TypeError Traceback (most recent call last) /usr/local/lib/python3.10/dist-packages/mmcv/utils/registry.py in build_from_cfg(cfg, registry, default_args) 70 except Exception as e: 71 # Normal TypeError does not print class name. ---> 72 raise type(e)(f'{obj_cls.__name__}: {e}') 73 74 TypeError: Cityscape_Dataset_times: CustomDataset.__init__() got an unexpected keyword argument 'dataset'dataset 코드 자체를 전반적으로 수정해야하는 걸까요 아니면 config 파일을 수정해야하는 건지 알 수 있을까요?아니면 cocodataset의 class를 'road'와 'vegetation'으로 두는 방식으로 가능할까요? (cocodataset에는 도로나 나무를 분류하는 카테고리가 딱히 없어 보여서 가능한지 모르겠어서 cityscapedataset 코드를 따로 들고 온거긴 합니다.)졸업이 달려 있는 과제이다보니 마음이 급해지는데 너무 막막해서 도움을 청합니다. 감사합니다.
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
mask_rcnn활용, 데이터 coco 포맷 변환 오류
선생님 안녕하세요 저는 현재 cityscape dataset을 바탕으로 kaggle mask_rcnn_nucleus 코드를 활용하여 segmentation을 해보려고 하고 있습니다.그에 따라 cityscape 데이터를 nulceus 데이터와 동일한 구조의 디렉토리로 정리하였는데요,이를 coco 포맷으로 변환하려고 하니, 아래 오류가 떠서 문의드립니다.파일 경로는 모두 맞게 입력한 것 같은데, 이미지를 못 읽고 있는 것 같습니다.. 'convert_nucleus_to_coco' 함수를 수정하거나 하지 않았는데 왜 이미지를 못읽는 걸까요?(파일 경로)(오류 메세지)convert_nucleus_to_coco('/content/drive/MyDrive/vision/DLCV_New-main/kaggle/train_data_jskim/03_masks/aachen', train_ids, '/content/drive/MyDrive/vision/DLCV_New-main/kaggle/train_data_jskim/coco_output/train_coco.json') convert_nucleus_to_coco('/content/drive/MyDrive/vision/DLCV_New-main/kaggle/train_data_jskim/03_masks/aachen', val_ids, '/content/drive/MyDrive/vision/DLCV_New-main/kaggle/train_data_jskim/coco_output/val_coco.json') _____아래 오류 메세지_____ /content/drive/MyDrive/vision/DLCV_New-main/kaggle/train_data_jskim/03_masks/aachen/aachen_000033_000019_gtFine_color/image/aachen_000033_000019_gtFine_color.png --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-63-d95f91ecbcb7> in <cell line: 1>() ----> 1 convert_nucleus_to_coco('/content/drive/MyDrive/vision/DLCV_New-main/kaggle/train_data_jskim/03_masks/aachen', train_ids, '/content/drive/MyDrive/vision/DLCV_New-main/kaggle/train_data_jskim/coco_output/train_coco.json') 2 convert_nucleus_to_coco('/content/drive/MyDrive/vision/DLCV_New-main/kaggle/train_data_jskim/03_masks/aachen', val_ids, '/content/drive/MyDrive/vision/DLCV_New-main/kaggle/train_data_jskim/coco_output/val_coco.json') <ipython-input-61-6f0ad3172ae3> in convert_nucleus_to_coco(data_root_dir, image_ids, out_file) 15 16 print(image_path) ---> 17 height, width = cv2.imread(image_path).shape[0:2] 18 # 개별 image의 dict 정보 생성 19 image_info = dict(file_name=file_name, AttributeError: 'NoneType' object has no attribute 'shape'
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
Graph execution error: 에러
선생님 안녕하세요. 다른 데이터셋으로 alexnet 모델훈련 후 test데이터 셋으로 성능 평가 중 해당에러가 발생하는데 버전문제일까요? 캐글노트북에서 진행하고 있습니다.UnknownError: Graph execution error:
-
미해결[딥러닝 전문가 과정 DL1231] Backpropagation과 야코비안 행렬
W = np.random.uniform(-3,3,(n_features,1))
안녕하세요 강사님~강의 너무 재미있게 보고있습니다. np.random.uniform(-3, 3, (n_features, 1))이것은 weight를 row 백터로 만드는 코드라인이 아닌가요?(n_features 개의 row 생성)컬럼 백터로 설명을 하신 부분을 들었습니다.혹시 추가 설명을 들을 수 있을까요? 추가1. 혹시 첨부 링크처럼편의를 위해서 W를 row vector로 하신건가요?링크
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
kenel_size부분 질문이요!
input_tensor = Input(shape = (IMAGE_SIZE, IMAGE_SIZE, 3)) x = Conv2D(filters = 32, kernel_size = (3, 3), padding = 'same', activation = 'relu', kernel_initializer = 'he_normal')(input_tensor)이 부분에서 입력데이터가 3차원으로 들어오잖아요.저번 강의에서 개별 커널의 차원은 3차원이라고 하셨던거 같은데,그럼 이 코드에선 한개의 커널이 rgb, 총 3개의 채널을 가진 (3 x 3 x 3)가 되는 것인가요?위에 전제가 맞다면, 2번째 줄 kernel_size가 (3, 3)인 이유는 케라스 내부에서 알아서 3개의 채널을 만들어주기 때문인가요??
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
섹션3-RCNN의 이해 02-> F.E에서 IoU 0.5이하로 fine tuning 했는데 SVM에서 IoU 0.3이하로 다시 fine tuning이 필요한가요?
안녕하세요-섹션 3 RCNN의 이해 02 강의에서 강의노트 중RCNN Training - Classification 제목의 강의안에서 질문드립니다. F.E에서 Ground Truth와 SS Predicted된 영역 IOU가 0.5 이상인 경우만 해당 클래스로, 나머지는 back ground로 fine-tuning했는데 SVM Classifier에서 Ground Truth로만 학습하되 0.3 IOU이하는 Background로 설정하는 방식을 병행하는 이유가 있는지 궁금합니다! 처음부터 F.E에서 IOU를 0.3으로 설정하는 방법도 있었을텐데.. 2단계로 나눠서 순차적으로 IOU를 낮추는 게 어떤 차이가 있는지 궁금합니다!F.E에서 IOU가 0.5 이상인 이미지만 filtering했는데 SVM에서 0.3 이하인 image가 남아 있을 수 있는 건 지, 제가 이해를 잘 못한 건지도 여쭤봅니다!
-
미해결머신러닝/딥러닝으로 이어지는 선형대수
선형대수 질문
안녕하세요 선생님 선형대수를 공부하다가 질문이 있어서 물어봅니다 선생님의 선형대수를 보다가 더 선형대수를 공부하고 싶어서 추가적으로 궁금한점이 있어서 물어봅니다차원과 랭크의 차이점 - 교과서나 인터넷에서도 서로 다른 개념이라고 말하는데 랭크와 차원의 본질 적인 차이점이 무엇인가요? 둘다 그냥 독립적인 열의 개수만큼의 숫자가 차원 그리고 랭크 인 것 같은데외적의 쓰임세: 내적은 여러 머신러닝이나 딥러닝에서 쓰인느 것을 많이 보았는데 외적 같은 경우는 어떻게 쓰이는 것인가요? 3차원 공간에서 2개의 백터의 수직인 백터를 만들어서 어디에 쓰이는건지 잘모르겠습니다 감사합니다
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
안녕하세요 교수님 model.fit()부분 batch_size관련해서 질문있습니다.
앞에서 mini-batch유형때 전체 학습 데이터의 순차적인 mini_batch가 딥러닝 프레임워크에 주로 사용한다고 말씀하셨지만 헷갈려서 질문드립니다!여기서 batch_size = 32라고 되어있는데, 이것은 전체 학습 데이터의 순차적인 mini_batch라고 생각하면 될까요?그래서 epoch1번당 batch_size * 1875 = 60000이 되는것을 알수가 있는거같아서요 혹시 맞을까요?
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
코드부분 질문있습니다.
show_images함수에서 22 * 6크기의 사진이 들어가고 행의 크기 : 1, 열의 크기 : 8로 각각의 axs(이미지)를 ncols만큼 출력하는것은 알겠습니다.근데 axs[i].set_title(class_names[labels[i]]) 부분이 이해가 되지 않습니다.train_images랑 train_labels를 정확하게 매핑시켜주신거라고 생각하면 될까요?제가 번호로된 MNIST를 해봐서 헷갈려서 질문드립니다.감사합니다
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
back propagation의 weight를 뒤에서부터 업데이트 하는 공식?은 없나요?
안녕하세요~! 좋은 강의 정말 감사드립니다...!!강의와 강의 질문중 대답해주신걸 바탕으로 이리저리 고민해봣는데backpropagation은 뒤에서부터 weight를 순차적으로 업데이트(gradient descent 알고리즘을 이용해서) 한다고 설명 되어 있는데...현재까지 강의에서는 체인룰에 좀 집중이 되어있는것 같고 최종 미분하는 것이 입력층에서 제일 가까운 weight로 보여집니다 그럼 한가지 궁금한것이체인룰을 실제로 사용할때 출력층과 제일 가까운 weight를 gradient descent를 이용해서 업데이트(앞쪽 강의의 단일퍼셉트론에서 한것과 같이) 한 다음 그업데이트 된 값에 대해서 다시 체인룰을 적용하는 것인가요!?다시한번 좋은강의 감사드립니다 성생님!^^
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
squeeze() 부분 질문입니다
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 강의 내용을 질문할 경우 몇분 몇초의 내용에 대한 것인지 반드시 기재 부탁드립니다. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.train_labels = train_labels.squeeze() test_labels = test_labels.squeeze()이 부분에서 np.reshape(-1)형식으로 차원을 변경해도 상관이 없나요??
-
해결됨[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
mmcv 설치 오류
안녕하세요, 선생님kaggle에서 mm_mask_rcnn_train_nucleus.ipynb 시도하려고 하니,버전 충돌의 문제인지 아래와 같이 계속 오류가 발생해서 코드를 실행하지 못하고 있습니다. 버전 문제라는 답변을 참고하여 torch버전을 낮춰서 다운로드 받아도 동일한 현상이 반복되어서, 어떻게 하면 될지 문의드립니다..오류 메시지입니다.No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' /usr/local/lib/python3.10/dist-packages/mmcv/__init__.py:20: UserWarning: On January 1, 2023, MMCV will release v2.0.0, in which it will remove components related to the training process and add a data transformation module. In addition, it will rename the package names mmcv to mmcv-lite and mmcv-full to mmcv. See https://github.com/open-mmlab/mmcv/blob/master/docs/en/compatibility.md for more details. warnings.warn( --------------------------------------------------------------------------- ModuleNotFoundError Traceback (most recent call last) <ipython-input-1-43071be0880a> in <cell line: 2>() 1 # 런타임->런타임 다시 시작 후 아래 수행. ----> 2 from mmdet.apis import init_detector, inference_detector 3 import mmcv /usr/local/lib/python3.10/dist-packages/mmdet/__init__.py in <module> 1 # Copyright (c) OpenMMLab. All rights reserved. 2 import mmcv ----> 3 import mmengine 4 from mmengine.utils import digit_version 5 ModuleNotFoundError: No module named 'mmengine' --------------------------------------------------------------------------- NOTE: If your import is failing due to a missing package, you can manually install dependencies using either !pip or !apt. To view examples of installing some common dependencies, click the "Open Examples" button below. ---------------------------------------------------------------------------
-
해결됨딥러닝 CNN 완벽 가이드 - Fundamental 편
back propagation 관해 질문있습니다.
안녕하세요 교수님개념이 헷갈리는거 같아서 확인차 질문글에 남깁니다!퍼셉트론과 심층망에서 경사하강법을 통해 weight값을 갱신하는데 퍼셉트론은 hidden layer가 없어 손실함수에서의 parameter값의 편미분을 쉽게 할수있지만,hidden layer가 있는 심층망에서는 parameter에 대한 미분이 쉽지 않아, chain rule을 이용한 backpropagation으로 각 layer마다 전해지는 weight값의 편미분 값을 경사하강법 공식에 대입하여 weight값을 update하는게 맞을까요??제가 남들보다 이해력이 좋지않아서 죄송합니다.. ㅎㅎ..
-
미해결TensorFlow Object Detection API 가이드 Part1 - 코드 10줄 수정으로 물체검출하기
1강 colab 2022-11-11 파일도 안됩니다.
colab 2022-11-11 파일도 안됩니다.올인원 강의하고 똑같은 거네요.소스 확인 부탁합니다.