묻고 답해요
141만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결딥러닝을 활용한 자연어 처리 (NLP) 과정 (기초부터 ChatGPT/생성 모델까지)
트랜스포머 feed forward network 보다가 질문드립니다.
제가 아직 word embedding 이 NN으로 들어갈 때 어떻게 학습하는지 개념이 헷갈리는것 같습니다. 먼저 기초적인 질문이라 죄송합니다 ^^;;교재에서 Position-wise Feed Forward NN는 단어별로 별도로 적용된다고 설명해주셨는데요!예를 들어, 강의 교재의 10(=seq_len=단어의 갯수) x 512(=d model) 이 dff가 2048인 Position-wise Feed Forward NN에 input으로 들어오면,첫번째 단어(1x512 vector)가 feed forward nn에 들어와서 학습 후 동일한 nn에 두번째 단어(1x512 vector)가 들어와서 학습...열번째 단어도 동일한 과정으로 feed forward nn이 학습되는 개념이라고 이해하면 될까요?항상 상세한 답변에 감사드립니다.
-
미해결딥러닝을 활용한 자연어 처리 (NLP) 과정 (기초부터 ChatGPT/생성 모델까지)
LSTM Decoder 모델에서 train 모델과 inference 모델 관련 질문드립니다.
# decoder 는 [h, c] 를 initial state 로 사용 decoder_inputs_ = Input(shape=(max_len_kor,), name="Decoder_Input") # decoder word embedding 은 pre-trained vector 를 사용 않음 decoder_embedding = Embedding(num_words_kor, EMBEDDING_DIM) decoder_inputs_x = decoder_embedding(decoder_inputs_)Q 1-1. training state에서는 위와 같이 decoder input이 한 문장의 seq를 모두 input으로 넣어주는데, 이는 teacher forcing을 위해 매 step 마다 seq 데이터(한 문장 데이터)를 input으로 모두 사용하기 때문인 것인가요? decoder_inputs_single = Input(shape=(1,), name='Decoder_input') x = decoder_embedding(decoder_inputs_single)Q 1-2. inference state에서는 위와 같이 input size가 1인 이유는, 매번 step마다 하나의 단어(번역할 단어=최초 <sos>, 그 후부터 이전 step의 output)만 input으로 사용하기 때문인가요? Q2. LSTM encoder의 경우 encoder output, h, c를 최종 산출물로 리턴해주는데요. h와 c가 context vector로 decoder의 input으로 입력된다고 이해하였습니다. 그렇다면, 번역 모델에서 encoder output은 어떤 값을 갖고 있으며 어떤 용도로 사용될 수 있을까요? 감사합니다!
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
정보가 손실되는 이유가 궁금합니다!
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 강의 내용을 질문할 경우 몇분 몇초의 내용에 대한 것인지 반드시 기재 부탁드립니다. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.강의에서 conv2d연산을 진행한 후에 softmax연산을 해주기 위해 3차원 데이터를 flatten시켜줬는데 flatten시켜준 후에 바로 softmax함수를 적용시키면 어떤 이유로 정보가 손실되는 이유에 대해서 궁금합니다.dense를 하나 추가하고 softmax를 적용하는 것과 dense없이 flatten후 softmax를 적용하는 것의 차이점에 대해서 궁금증이 생긴 것 같습니다!
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
opencv Yolo v3 inference
안녕하세요. 권철민 강사님유익한 영상 잘 보고 있습니다. 현재 opencv로 Yolov3를 inference하는 파트를 보고 있습니다.nms threshold 값이 예를 들어nms_confidence = 0.4이면 한 상자당 confidence score가 가장 높은 상자를 뽑아 for문을 돌면서 iou 값이 nms_confidence이상이면 제거하는 데 쓰이는 것이 맞는지 확인하고 싶습니다. 그리고 85개의 차원중에 5번째에 있는 객체가 있는지 없는 지를 판단하는 confidence (detection[5])은 안쓰는 지 여쭙고 싶습니다. 본 코드에서는 class_score 부분만 if문에 조건으로 사용하여 의아한 기분이 들어 질문 드립니다.
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
Validation Data Set Augmentation 문의
안녕하세요.좋은 강의 감사합니다.Validation Data Set Augmentation 관련 문의드립니다.tr_ds = image_dataset(tr_path, tr_label, image_size=IMAGE_SIZE, batch_size=BATCH_SIZE, augmentor=image_augmentor, shuffle=True, pre_func=xcp_preprocess_input) val_ds = image_dataset(val_path, val_label, image_size=IMAGE_SIZE, batch_size=BATCH_SIZE, augmentor=None, shuffle=False, pre_func=xcp_preprocess_input) Validation Set 부분은 Augmentation을 None으로 진행했는데요.Augmentation을 None이 아닌 것으로 진행해도 성능에는 크게 문제가 없을 것으로 생각합니다. (별도 Test Set으로 평가했을 때, 평가 성능이 저하 된다거나 그렇진 않을 것 같아서요.)Validation Set 부분도 Train Set과 마찬가지로 Augmentation을 진행해도 되지 않을까요? 딱히 구글링으로 명확한 답을 찾기 어려워 선생님의 의견을 얻어보고 싶습니다.감사합니다.
-
미해결딥러닝을 활용한 자연어 처리 (NLP) 과정 (기초부터 ChatGPT/생성 모델까지)
Decoder 의 Output Probablilities 계산하는 부분 RNN과 관련하여 질문드립니다.
RNN Decoder의 경우, time step 별로 해당 input 단어에 대한 vocab 사전의 확률분포가 나오면, argmax 하거나, beam searching 하여 output을 최종 산출한다는 것으로 이해했었습니다.강의에서 트랜스포머 Decoder의 경우도 개념은 똑같다고 하셨는데, 트랜스포머도 time step 이 있는건가요? 예를들어,'I love you' 를 '난 널 사랑해' 로 번역할 때,decoder에 attention계산과정 및 Feed Forward 계산과정을 거쳐 나온 최종 attetion vector (seq_len x d model 차원) 가 첫번째 단어 '난' 부터 시작해서 greedy 하게, 혹은 beam search 전략 통하여 확률분포를 구한다고 보면 될까요?
-
미해결딥러닝을 활용한 자연어 처리 (NLP) 과정 (기초부터 ChatGPT/생성 모델까지)
트랜스포머 Encoder Output이 Decoder Input으로 들어갈 때 관련 질문 드립니다.
Encoder의 Output은 attention vector (seq_len x d model) 하나가 나오는데, Decoder의 인풋으로 들어갈 땐 이를 encoder에서 배웠던 Q, K, V 로 나눈뒤, 이중에서 K, V 가 Decoder의 Encoder-Decoder attention layer에서의 K, V로 사용된다고 보면 될까요?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
안녕하세요. 교수님.
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 강의 내용을 질문할 경우 몇분 몇초의 내용에 대한 것인지 반드시 기재 부탁드립니다. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. mmdetction에서 각 객체 별로 map를 도출하는 방법이 있을까요? 만약 도출하려면 어디서 수정을 어떻게 해야될까요...도움 부탁드립니다!!..
-
미해결처음하는 딥러닝과 파이토치(Pytorch) 부트캠프 (쉽게! 기본부터 챗GPT 핵심 트랜스포머까지) [데이터분석/과학 Part4]
섹션2 코드질문
# 동일 shape 은 당연히 Tensor 간 연산 가능data1 = torch.torch.FloatTensor([ [1], [2], [3] ])data2 = torch.FloatTensor([1, 1, 1])data3 = data1 + data2 print (data1.shape, data2.shape, data3.shape)print (data3) 이 코드에서 data1은 torch.FloatTensor이 아닌torch.torch.FloatTensor를 사용하는 이유가 궁금합니다.출력했을때는 같은결과가 나오는데 말이죠..
-
해결됨[Pytorch] 파이토치를 활용한 딥러닝 모델 구축
the kernel appears to have died. it will restart automatically.
섹션1의 마지막 강좌에서 저도 주피터 노트북에 똑같이 작성해보면서 공부하고있었는데요.the kernel appears to have died. it will restart automatically. 이런 문구가 뜨면서 이미지화가 안되면 어떻게 처리해야하나요? 구글링을 해보고 ~config에 들어가서 수정도 해봤는데 잘 안됩니다..
-
해결됨[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
개별 Json 어노테이션 파일 및 2개 이상의 라벨링 속성
안녕하세요. 강의 들으면서 이미지 디텍션에 깊은 이해를 하게 되었습니다.2가지 문의 드립니다.첫번째, 학습데이터를 입수했는데, PASCAL VOC와 같이 이미지별로 annotation이 존재하나, XML이 아닌 JSON 형식입니다. COCO 또는 YOLO 포맷으로 변환하고 싶습니다.이런 경우는 자바 프로그램등을 이용하여 JSON을 XML로 변환후, COCO나 YOLO로 변환해야 하는 방법을 사용하는지, 적정한 변환 방법이 궁금합니다. 두번째, 이미지의 라벨이 2가지 이상 일때는 어떻게 학습데이터를 구성해서 학습해야 하는지 궁금합니다.만약에 공작기계의 주요 부품과 상태를 진단한다고 할때,부품은 베어링부, 조인트부, 절삭부의 3가지가 있고,상태는 normal과 abnormal의 2가지고장상세는 깨어짐, 비틀림의 2가지 있다고 했을때,디텍션에서 조인트부-normal 또는 조인트부-abnormal-깨어짐, 이런식으로 디텍션을 할 수 있도록 학습시키려고 할때 어떻게 해야하는지 궁금합니다.감사합니다. 더운 여름 건강 유의하십시요.
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
val_loss값이 계속 커지는 현상이 왜 나오나요?
안녕하세요.코드를 타이핑하며 실행해 보는데, 강의 화면과는 달리 vla_loss값이 점점 커지는 결과가 나왔습니다.처음에는 제가 타이핑을 잘못해서 그런가 했는데, 선생님이 제공해주신 코드를 그대로 실행해도 비슷한 결과가 나왔습니다.여러 번 런타임을 재실행하고 해봐도 마찬가지입니다.왜 이런 현상이 나타나나요?(kaggle에서 실행했습니다)
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
tf hub row_detection_boxes
현재 TF HUB의 SSD 모델 Inference를 수행중입니다.result의 키값 중 row_detection_boxes의 경우shape가 (1,1917,4)가 나옵니다.이 경우 SSD의 bounding box가 8700개정도로 나오는 걸로 알고있는데 그중에 1917개의 bounding box를 뽑아준건가요? 일단 시각화를 해보니 이렇게 나오긴 했습니다.
-
미해결딥러닝을 활용한 자연어 처리 (NLP) 과정 (기초부터 ChatGPT/생성 모델까지)
embedding이 뭔가요?
sentiment analysis 이론 강의까지 들었는데, embedding 의 기능만 설명하시고 embedding이 뭔지에 대한 설명이 없어서 이해하기 힘들어요. embedding이 뭔지 개념 설명좀 부탁드립니다
-
미해결딥러닝을 활용한 자연어 처리 (NLP) 과정 (기초부터 ChatGPT/생성 모델까지)
LSTM 모델에서 return_state를 False로 놨을때 출력되는 o,h,c
LSTM 모델에서 return_state를 False로 놨을때 출력되는 o,h,c에 대한 질문이 있습니다..o는 output, h는 hidden layer 맞나요? 그리고 c는 뭔가요?
-
해결됨최신 딥러닝 기술 Vision Transformer 개념부터 Pytorch 구현까지
Multi-Head Attention 모델 구조에서 궁금한게 있습니다.
안녕하세요. 코드 공부하면서 궁금한 점이 생겨 질문남깁니다.앞선 이론 강의에서 이해한 바로는 MSA과정에서 Attention*value를 통해 [배치수, 헤드수, 패치수+1, Dh] 차원의 결과들이 나오고 Linear Projection을 통해 [배치수, 패치수+1, D] 차원의 결과가 얻어지는 것으로 이해했습니다.attention = torch.softmax(q @ k / self.scale, dim=-1) x = self.dropout(attention) @ v x = x.permute(0,2,1,3).reshape(batch_size, -1, self.latent_vec_dim)위와 같이 제공해주신 코드에는 이를 위한 Linear 과정이 따로 없는 것 같고 Attention*value 결과에 permute와 reshape를 해주었는데, 해당 과정이 이론에서 설명해주신 Linear 과정과 동일한 효과를 지니는 것일까요??
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
저장된 모델에는 무엇이 들어 있나요? 그리고 weight만 저장했을 경우 어떻게 사용하나요?
매개변수를 하나하나 알기 쉽게 설명해주셔서 감사합니다. [질문 1] fit 중에 콜백함수를 이용해 모델을 저장할 수 있다고 하셨는데요, 모델 안에 무엇이 저장되는지 궁금합니다. loss, accuracy, weights 는 저장되어 있을 것 같은데요, 그 외에 무엇이 저장되어 있나요? 혹시 학습 데이터도 저장되나요? 저장 목록을 알려면 어떤 명령어를 써야 하나요? [질문 2] fit 중에 오류가 발생해 다운되었을 때, 저장된 모델을 불러 fit을 이어서 할 수 있나요? [질문 3] save_weights_only 했을 경우 어떻게 사용해야 하나요? 저장된 모델을 불러 바로 predict 하면 되나요? 모델을 저장하고 불러 와 사용한 적이 없다보니 질문 범위가 너무 넓은 것 같아 죄송합니다. 혹시 참고할 만한 사이트를 알려주시면 공부해보겠습니다.
-
미해결딥러닝을 활용한 자연어 처리 (NLP) 과정 (기초부터 ChatGPT/생성 모델까지)
감성 분석 실습 모델 만들때 질문 드립니다!
다시 한 번 좋은 강의 너무 감사합니다 :)회사에서 NLP로 업무가 바뀌며 열공하느라 질문이 많네요..^^; 030_IMDB_movie_reviews.ipynb 의 아래 코드에서model = Sequential([ Embedding(vocab_size+1, 64), Bidirectional(tf.keras.layers.LSTM(64)), Dense(64, activation='relu'), Dense(1, activation='sigmoid') ])embedding의 차원 64와 LSTM hidden size 64와 Dense의 64는 항상 같아야 되는게 맞나요? tf.keras.layers.LSTM(64))위 코드를 해석해보면, LSTM의 input에 대한 weight 개수가 64개 인데 Dense(64, activation='relu'),그 weight들을 fully connected 뉴런들로 덧붙여주겠다는 뜻으로 해석하면 될까요?
-
미해결YOLO 구현으로 배우는 딥러닝 논문 구현 with TensorFlow 2.0
MNS 질문
섹션 3 YOLO 모델 리뷰 10:54초에 말씀하시는 부분은 [클래스별 softmax 결과] * [grid cell에 object가 존재할 확률] 을 곱해서 [하나의 바운딩 박스 좌표에 매핑되는 결과]를 설명하시는 부분이고,섹션 3 Non-Maximum Suppression 4분 10초부터 말씀하시는 부분에서는 위에서 언급한 96개의 (1,20)에 매핑되는 바운딩 방스를 가지고MNS를 진행한다고 말씀하셨다는 의도로 이해해도 될까요?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
논문 구현 조언 부탁드립니다.
안녕하십니까 강의를 듣다 조언을 좀 부탁드릴 수 있을까 싶어 연락드립니다.현재 2학년 재학중으로 컴퓨터비전 분야의 대학원을 생각하고 있습니다.대학원을 준비하면서 여러 공부를 해본 결과 논문을 구현해보기로 결심했습니다.그래서 강의 초반에 설명하시는 faster rcnn을 구현하고자 했지만 실패하고 말았습니다.혹시 구현하기에 난이도가 좀 더 낮은 모델을 추천해주실 수 있는지 글 남깁니다.이상입니다.