묻고 답해요
141만명의 커뮤니티!! 함께 토론해봐요.
인프런 TOP Writers
-
미해결차량 번호판 인식 프로젝트와 TensorFlow로 배우는 딥러닝 영상인식 올인원
강의에서 제공받은 h5 파일을 적용할때 결과가 나빠지는 이유가 뭘 까요?
pipeline = keras_ocr.pipeline.Pipeline() images = [ keras_ocr.tools.read('42.jpg') ] prediction_groups = pipeline.recognize(images) fig, ax = plt.subplots(figsize=(20, 20)) image, predictions = images[0], prediction_groups[0] keras_ocr.tools.drawAnnotations(image=image, predictions=predictions, ax=ax) plt.show()이렇게 했을때 결과값은 이런데강의에서 제공받은 h5을 사용하면 어노테이션을 전혀 그리지 못합니다.import matplotlib.pyplot as plt import keras_ocr detector = keras_ocr.detection.Detector() detector.model.load_weights('detector_carplate.h5') recognizer = keras_ocr.recognition.Recognizer() recognizer.model.load_weights('recognizer_carplate.h5') pipeline = keras_ocr.pipeline.Pipeline(detector=detector, recognizer=recognizer, scale=1) images = [ keras_ocr.tools.read('42.jpg') ] prediction_groups = pipeline.recognize(images) fig, ax = plt.subplots(figsize=(20, 20)) image, predictions = images[0], prediction_groups[0] keras_ocr.tools.drawAnnotations(image=image, predictions=predictions, ax=ax) plt.show()이런식으로 ocr 결과값이 잘 수행되지 않는데 어떤 원인들이 있을까요?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
cvat 태스크에서 이미지를 추가하고 싶습니다.
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 강의 내용을 질문할 경우 몇분 몇초의 내용에 대한 것인지 반드시 기재 부탁드립니다. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. 안녕하세요, 첫 수강이라 전체흐름 위주로 듣고 있습니다. 도움 많이 받고 있습니다. 현재 맥에서 도커를 이용해 로컬호스트로 이용해서 제가 가진 이미지로 라벨링하고 학습시켜보았는데요.추론까지 제대로 되는데, 클래스마다 이미지수가 편차가 있다보니, 이미지가 많은 클래스로 인식하는 경향이 있는 것 같은데, 기분탓인지요? 그래서, 적은 클래스의 이미지를 추가해서 전체적으로 숫자를 맞추고 싶은데, 기존 태스크에 이미지를 추가하는 방법이 있는지요? 감사합니다.
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
LLM 용어 정리 - 온도(Temperature)
"LLM 용어 정리 - 온도(Temperature)"이 강의는 강의자료 제공이 안되었나요?강의자료 압축파일에 이 파일은 안보여서 질문합니다. 감사합니다.
-
미해결모두를 위한 대규모 언어 모델 LLM(Large Language Model) Part 1 - Llama 2 Fine-Tuning 해보기
conda 환경에서 autotrain-advanced
pip 말고 conda 가상환경에서 작업을 진행하고 싶은데, conda 가상환경에서 autotrain-advanced를 사용하려면 어떻게 해야하나요?
-
해결됨딥러닝 CNN 완벽 가이드 - Fundamental 편
Boston 주택 가격에서, scailing 안하면 값이 발산합니다.
안녕하세요.여러가지를 해보던 중, boston 주택가격 실습에서 MinMaxSclaer를 적용하지 않고, 한번 그대로 값을 넣어 gradient descent를 수행하니, loss function이 발산해버리는 현상을 발견했습니다. 혹시 이러한 결과가 나온 원인이 무었일까요?? 어쨌든 gradient descent는 값의 범위에 상관 없이 항상 loss function의 값이 작아지는 방향으로 이동하는 것으로 이해했는데, feature들 간의 값의 차이가 있어서 loss function의 값이 발산하는것이 왜 그렇게 되는지 이해가 잘 되지 않아 질문 드립니다.!!
-
해결됨차량 번호판 인식 프로젝트와 TensorFlow로 배우는 딥러닝 영상인식 올인원
크래프트 모델 다운 못받는 이유가 있을까요?
h5 모델 둘 다 같은 경로에 있는데 왜 이런걸까요?
-
해결됨Google 공인! 텐서플로(TensorFlow) 개발자 자격증 취득
윈도우용 배치파일 다운로드 링크를 클릭하면 404에러가 뜹니다.
[2023.11.24 UPDATE] 텐서플로우 자격인증 시험 가상환경 설정 - 윈도우 편에서 윈도우용 배치파일 다운로드 링크를 클릭하면 404에러가 뜹니다. 혹시 다른 방식으로 다운로드 받을 수 있는 방법이 있을까요?
-
미해결[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
regression 문제에 대한 결과 시각화
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요.강사님 안녕하세요. t-SNE 수업에 대하여 궁금한점이 있습니다.강의에서는 classification 문제에 대한 시각화를 알려 주셨는데요, 혹시 regression 에 대해서도 t-SNE를 적용할 수 있을지 궁금합니다. 만약 불가능 하다면, t-SNE 이외에 활용할 수 있는 다른 방법이 있을지 궁금합니다.
-
해결됨Google 공인! 텐서플로(TensorFlow) 개발자 자격증 취득
가상환경설정
가상환경설정-윈도우 링크에 Error404가 나오는데 저만 그런것일까요?
-
미해결[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
딥러닝 수업과 컴퓨터 비전 수업
안녕하십니까 질문이 있어 문의 드립니다.현재 로드맵을 따라 다음과 같은 수업을 신청하여 수강중에 있습니다. 딥러닝 CNN 완벽 가이드 - Fundamental 편딥러닝 컴퓨터 비전 완벽 가이드 컴퓨터 비전 수업을 수강하기 위해서 1번 수업의 'CNN 모델 구현 및 성능 향상 기본 기법 적용하기' 까지만 수강해도 이해가 될지 여쭙습니다.
-
해결됨[개정판] 딥러닝 컴퓨터 비전 완벽 가이드
mmdetection maskRCNN 훈련 예제를 데스크탑에서 적용가능한가요?
mmdetection maskRCNN 코랩 훈련 예제 코드를 폴더 설정만 변경해서 테스크탑 MS vscode 로 돌리면 에러가 발생합니다.inference는 vscode에서 문제 없이 작동하는데, 훈련의 경우는 데스크탑에서는 동작이 안되는 것인지 문의드립니다.
-
해결됨삼각형의 실전! OpenAI Triton 초급
실습 코드
실습코드 제공해주신다고 인트로에서 말씀하셨는데 어디서 볼 수 있나요?
-
미해결예제로 배우는 딥러닝 자연어 처리 입문 NLP with TensorFlow - RNN부터 BERT까지
9강 BERT 실습 예제 코드
혹시 9강 BERT 실습 예제 코드는 어디서 볼 수 있을까요? 기존 강의들은 강의 노트 뒤에 있었는데 BERT 예제는 보이지 않아서요 ㅠㅠㅠ
-
미해결[OpenCV] 파이썬 딥러닝 영상처리 프로젝트 - 손흥민을 찾아라!
주피터 실행 관련 문제
주피터를 실행시켰는데 로고만 뜨고 빈화면이 떠요
-
미해결[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
Loss function 관련하여 질문드립니다.
강사님 안녕하세요. test loss 및 validation loss 관련하여 질문드립니다. train loss와 validation loss 플랏을 보고, 이 모델이 잘 학습이 되었는지 어떻게 판단해야 하는지가 궁금하여 질문드리게 되었습니다.강의 코드를 활용하여 학습하고자 하는 데이터에 적용해 보았습니다. 같은 데이터여도, 모델을 어떻게 구성하는지에 따라 에폭에 따른 loss 값이 큰 차이를 보였습니다. Case 1) 초기 epoch의 validation loss가 train loss보다 낮은 경우Case 2 ) validation loss와 train loss의 차이가 큰 경우Case 3) Validation loss가 감소하는 형태를 띄나, 크게 fluctuation 할 경우Case 4) Validation loss가 크게 fluctuation하며, 감소하는 형태가 아닌 경우 (증가 -> 감소)말씀드린 4가지 case 경우 모두, 최종적으로 loss 값 자체는 낮게 나왔습니다.하지만 제가 이상적이라고 생각한 loss 곡선에는 모두 벗어나는것 같아서, 위 형태들도 학습이 잘 되었다고 판단할 수 있을지 궁금하여 질문드립니다! 감사합니다.
-
미해결파이썬을 활용한 머신러닝 딥러닝 입문
타이타닉 예제에서 혼동되는 개념이있습니다!
좋은 강의 잘 듣고있습니다!! 혹시 타이타닉 예제에서 Pclass 가 상관관계가 낮다고 표현하셨는데, 음의 상관관계도 절대값이 높으면 상관관계가 짙은거 아닌가하는 궁금증이 듭니다!!!survived 에 미치는 영향을 상관관계라고 하는것이라 한다면 양수 > 음수 측면이아니라 절대값으로 판단하여 SibSp 가 상관관계가 낮다고 봐야하는거 아닌가요!! 헷갈려서 질문드립니다
-
미해결딥러닝 CNN 완벽 가이드 - Fundamental 편
보스턴 집값 예제가 실행이 안 됩니다.
/opt/conda/lib/python3.10/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function load_boston is deprecated; `load_boston` is deprecated in 1.0 and will be removed in 1.2. The Boston housing prices dataset has an ethical problem. You can refer to the documentation of this function for further details. The scikit-learn maintainers therefore strongly discourage the use of this dataset unless the purpose of the code is to study and educate about ethical issues in data science and machine learning. In this special case, you can fetch the dataset from the original source:: import pandas as pd import numpy as np data_url = "http://lib.stat.cmu.edu/datasets/boston" raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None) data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) target = raw_df.values[1::2, 2] Alternative datasets include the California housing dataset (i.e. :func:`~sklearn.datasets.fetch_california_housing`) and the Ames housing dataset. You can load the datasets as follows:: from sklearn.datasets import fetch_california_housing housing = fetch_california_housing() for the California housing dataset and:: from sklearn.datasets import fetch_openml housing = fetch_openml(name="house_prices", as_frame=True) for the Ames housing dataset. warnings.warn(msg, category=FutureWarning)예전에 어떤 사람이 같은 내용으로 문의를 한 적이 있습니다. 그런데 답변의 내용대로 해도 해결이 안 됩니다. 사이킷런 버전 1.0.2로 바꾸고 run -> restart & clear cell output 누르고 다시 들어가도 이런 오류가 나옵니다.어떻게 하면 좋을까요?
-
미해결[PyTorch] 쉽고 빠르게 배우는 NLP
batch size 질문이 있습니다!
안녕하세요. 좋은 강의 열어주셔서 감사합니다.batch size를 크게할 경우 학습속도가 더 빨라질것 같은데, 맞나요? batch size와 모델 성능과의 상관관계도 있을까요?
-
해결됨Google 공인! 텐서플로(TensorFlow) 개발자 자격증 취득
슬랙 초대 부탁드립니다.
henrykim9319@gmail.com 슬랙 초대 부탁드립니다. 감사합니다.
-
해결됨[파이토치] 실전 인공지능으로 이어지는 딥러닝 - 기초부터 논문 구현까지
early stopping 코드 문의
- 학습 관련 질문을 남겨주세요. 상세히 작성하면 더 좋아요! - 먼저 유사한 질문이 있었는지 검색해보세요. - 서로 예의를 지키며 존중하는 문화를 만들어가요. - 잠깐! 인프런 서비스 운영 관련 문의는 1:1 문의하기를 이용해주세요. if val_loss < early_stopping_loss: torch.save(resnet.state_dict(), PATH) early_stopping_train_loss = train_loss early_stopping_val_loss = val_loss early_stopping_epoch = epoch 강사님 안녕하세요.위 코드에 궁금한 점이 있어서 질문드립니다.위 코드의 4번째 줄에서 아래와 같이 early_stopping_loss 변수를 업데이트 해줘야 하는게 아닌지 궁금합니다.early_stopping_loss = val_loss지금 코드 상으로는 early_stopping_loss가 업데이트 되는 부분이 없어보여서요. 지금 코드로는 모든 epoch에서 if 문에 들어가는것이 아닐지 질문드립니다! 감사합니다.