인프런 커뮤니티 질문&답변

zcx6263님의 프로필 이미지
zcx6263

작성한 질문수

[개정판] 파이썬 머신러닝 완벽 가이드

실전 텍스트 분석: 04 - Mercari Price Suggestion 피처 인코딩과 피처 벡터화 수행

Text Analysis 실습(Mercari Price Suggestion) 질문

해결된 질문

작성

·

215

·

수정됨

0

안녕하세요. 좋은 강의 감사합니다.

실전 텍스트 분석: 04 - Mercari Price Suggestion 피처 인코딩과 피처 벡터화 수행 ( 3분 ~ 4분)

수업 진행 중에 질문이 있습니다.

feature vectorization을 item description에 적용하는 건 이해가 되는데, name에 적용하는 이유가 있을까요?

name 자체가 거의 유니크 하기 때문에 feature 로써

의미가 없지 않을까 해서 질문드려요!

(item description 같은 경우는 각 단어 별로 중복도 많이 생기고 패턴이 생겨서 예측에 도움이 될 거라 생각했고, name 같은경우는 거의 유니크해서 feature 자체에서 제외해야 하지 않을 까 하는데, 잘못 이해 하고 있을까요?)

 

또한, 예제는 회귀 모델을 보여주셨는데, 분류 모델에서도

좋은 성능을 낼까요?

비정형 데이터(텍스트 문서)와 정형 데이터를 합쳐서 예측 하는 경우 분류 모델 로도 많이 사용되는지 궁금합니다!

 

감사합니다.

  

답변 1

0

권 철민님의 프로필 이미지
권 철민
지식공유자

안녕하십니까,

name을 feature에 포함시킨 이유는 name 자체 속성이 target값에 영향을 미칠 수 있기 때문입니다. 즉 제품명(어떤 제품인지에 따라)에 따라서 target값의 상관도가 존재합니다.

물론 titanic 모델과 같이 이름이 unique하고, target값과 상관이 없는 경우라면 이는 제거하는 게 오히려 오버피팅을 개선하는 측면에서 더 좋을 수 있지만, 여기서는 상황이 좀 다릅니다.

비정형 데이터(텍스트 문서)와 정형 데이터를 합쳐서 예측 하는 것이 특별히 회귀에만 적용하는 것은 아닙니다. 모델이 목표로 하는 바에 따라서 분류에도 적용가능합니다.

감사합니다.

zcx6263님의 프로필 이미지
zcx6263

작성한 질문수

질문하기