인프런 커뮤니티 질문&답변

gaeggol님의 프로필 이미지
gaeggol

작성한 질문수

OpenCV 를 활용한 명함인식 기능 구현 강좌

강의 자료

강의 마지막 예제에서 다음과 같은 에러가 발생합니다.

작성

·

8.9K

0

images/scannedImage.png only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices

코드는 아래와 같습니다.

# (참고) OpenCV - 이미지에서 텍스트 영역만 찾아내기 # 출처: http://www.danvk.org/2015/01/07/finding-blocks-of-text-in-an-image-using-python-opencv-and-numpy.html import glob import os import random import sys import random import math import json from collections import defaultdict import cv2 from PIL import Image, ImageDraw import numpy as np from scipy.ndimage.filters import rank_filter def dilate(ary, N, iterations): """Dilate using an NxN '+' sign shape. ary is np.uint8.""" kernel = np.zeros((N,N), dtype=np.uint8) kernel[(N-1)/2,:] = 1 dilated_image = cv2.dilate(ary / 255, kernel, iterations=iterations) kernel = np.zeros((N,N), dtype=np.uint8) kernel[:,(N-1)/2] = 1 dilated_image = cv2.dilate(dilated_image, kernel, iterations=iterations) dilated_image = cv2.convertScaleAbs(dilated_image) return dilated_image def props_for_contours(contours, ary): """Calculate bounding box & the number of set pixels for each contour.""" c_info = [] for c in contours: x,y,w,h = cv2.boundingRect(c) c_im = np.zeros(ary.shape) cv2.drawContours(c_im, [c], 0, 255, -1) c_info.append({ 'x1': x, 'y1': y, 'x2': x + w - 1, 'y2': y + h - 1, 'sum': np.sum(ary * (c_im > 0))/255 }) return c_info def union_crops(crop1, crop2): """Union two (x1, y1, x2, y2) rects.""" x11, y11, x21, y21 = crop1 x12, y12, x22, y22 = crop2 return min(x11, x12), min(y11, y12), max(x21, x22), max(y21, y22) def intersect_crops(crop1, crop2): x11, y11, x21, y21 = crop1 x12, y12, x22, y22 = crop2 return max(x11, x12), max(y11, y12), min(x21, x22), min(y21, y22) def crop_area(crop): x1, y1, x2, y2 = crop return max(0, x2 - x1) * max(0, y2 - y1) def find_border_components(contours, ary): borders = [] area = ary.shape[0] * ary.shape[1] for i, c in enumerate(contours): x,y,w,h = cv2.boundingRect(c) if w * h > 0.5 * area: borders.append((i, x, y, x + w - 1, y + h - 1)) return borders def angle_from_right(deg): return min(deg % 90, 90 - (deg % 90)) def remove_border(contour, ary): """Remove everything outside a border contour.""" # Use a rotated rectangle (should be a good approximation of a border). # If it's far from a right angle, it's probably two sides of a border and # we should use the bounding box instead. c_im = np.zeros(ary.shape) r = cv2.minAreaRect(contour) degs = r[2] if angle_from_right(degs) <= 10: box = cv2.boxPoints(r) box = np.int0(box) cv2.drawContours(c_im, [box], 0, 255, -1) cv2.drawContours(c_im, [box], 0, 0, 4) else: x1, y1, x2, y2 = cv2.boundingRect(contour) cv2.rectangle(c_im, (x1, y1), (x2, y2), 255, -1) cv2.rectangle(c_im, (x1, y1), (x2, y2), 0, 4) return np.minimum(c_im, ary) def find_components(edges, max_components=16): """Dilate the image until there are just a few connected components. Returns contours for these components.""" # Perform increasingly aggressive dilation until there are just a few # connected components. count = 21 dilation = 5 n = 1 while count > 16: n += 1 dilated_image = dilate(edges, N=3, iterations=n) #_, contours, hierarchy = cv2.findContours(dilated_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours, hierarchy = cv2.findContours(dilated_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) count = len(contours) #print dilation #Image.fromarray(edges).show() #Image.fromarray(255 * dilated_image).show() return contours def find_optimal_components_subset(contours, edges): """Find a crop which strikes a good balance of coverage/compactness. Returns an (x1, y1, x2, y2) tuple. """ c_info = props_for_contours(contours, edges) c_info.sort(key=lambda x: -x['sum']) total = np.sum(edges) / 255 area = edges.shape[0] * edges.shape[1] c = c_info[0] del c_info[0] this_crop = c['x1'], c['y1'], c['x2'], c['y2'] crop = this_crop covered_sum = c['sum'] while covered_sum < total: changed = False recall = 1 * covered_sum / total prec = 1 - 1 * crop_area(crop) / area f1 = 2 * (prec * recall / (prec + recall)) #print '----' for i, c in enumerate(c_info): this_crop = c['x1'], c['y1'], c['x2'], c['y2'] new_crop = union_crops(crop, this_crop) new_sum = covered_sum + c['sum'] new_recall = 1 * new_sum / total new_prec = 1 - 1 * crop_area(new_crop) / area new_f1 = 2 * new_prec * new_recall / (new_prec + new_recall) # Add this crop if it improves f1 score, # _or_ it adds 25% of the remaining pixels for <15% crop expansion. # ^^^ very ad-hoc! make this smoother remaining_frac = c['sum'] / (total - covered_sum) new_area_frac = 1 * crop_area(new_crop) / crop_area(crop) - 1 if new_f1 > f1 or ( remaining_frac > 0.25 and new_area_frac < 0.15): print('%d %s -> %s / %s (%s), %s -> %s / %s (%s), %s -> %s' % ( i, covered_sum, new_sum, total, remaining_frac, crop_area(crop), crop_area(new_crop), area, new_area_frac, f1, new_f1)) crop = new_crop covered_sum = new_sum del c_info[i] changed = True break if not changed: break return crop def pad_crop(crop, contours, edges, border_contour, pad_px=15): """Slightly expand the crop to get full contours. This will expand to include any contours it currently intersects, but will not expand past a border. """ bx1, by1, bx2, by2 = 0, 0, edges.shape[0], edges.shape[1] if border_contour is not None and len(border_contour) > 0: c = props_for_contours([border_contour], edges)[0] bx1, by1, bx2, by2 = c['x1'] + 5, c['y1'] + 5, c['x2'] - 5, c['y2'] - 5 def crop_in_border(crop): x1, y1, x2, y2 = crop x1 = max(x1 - pad_px, bx1) y1 = max(y1 - pad_px, by1) x2 = min(x2 + pad_px, bx2) y2 = min(y2 + pad_px, by2) return crop crop = crop_in_border(crop) c_info = props_for_contours(contours, edges) changed = False for c in c_info: this_crop = c['x1'], c['y1'], c['x2'], c['y2'] this_area = crop_area(this_crop) int_area = crop_area(intersect_crops(crop, this_crop)) new_crop = crop_in_border(union_crops(crop, this_crop)) if 0 < int_area < this_area and crop != new_crop: print('%s -> %s' % (str(crop), str(new_crop))) changed = True crop = new_crop if changed: return pad_crop(crop, contours, edges, border_contour, pad_px) else: return crop def downscale_image(im, max_dim=2048): """Shrink im until its longest dimension is <= max_dim. Returns new_image, scale (where scale <= 1). """ a = im.shape[0] b = im.shape[1] if max(a, b) <= max_dim: return 1, im scale = 1 * max_dim / max(a, b) dim = (int(a * scale), int(b * scale)) new_im = cv2.resize(im, dim, interpolation = cv2.INTER_AREA) return scale, new_im def process_image(path, out_path): orig_im = Image.open(path) im = cv2.imread(path, cv2.IMREAD_GRAYSCALE) scale, im = downscale_image(im) edges = cv2.Canny(im, 100, 200) # TODO: dilate image _before_ finding a border. This is crazy sensitive! #_, contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) borders = find_border_components(contours, edges) borders.sort(key=lambda i_x1_y1_x2_y2: (i_x1_y1_x2_y2[3] - i_x1_y1_x2_y2[1]) * (i_x1_y1_x2_y2[4] - i_x1_y1_x2_y2[2])) border_contour = None if len(borders): border_contour = contours[borders[0][0]] edges = remove_border(border_contour, edges) edges = 255 * (edges > 0).astype(np.uint8) # Remove ~1px borders using a rank filter. maxed_rows = rank_filter(edges, -5, size=(1, 20)) maxed_cols = rank_filter(edges, -5, size=(20, 1)) debordered = np.minimum(np.minimum(edges, maxed_rows), maxed_cols) edges = debordered contours = find_components(edges) if len(contours) == 0: print('%s -> (no text!)' % path) return crop = find_optimal_components_subset(contours, edges) crop = pad_crop(crop, contours, edges, border_contour) crop = [int(x / scale) for x in crop] # upscale to the original image size. # draw and show cropped rectangle area in the original image rgb_im = orig_im.convert('RGB') draw = ImageDraw.Draw(rgb_im) draw.rectangle(crop, outline='red') rgb_im.show() text_im = orig_im.crop(crop) text_im.show() text_im.save(out_path) print('%s -> %s' % (path, out_path)) if __name__ == '__main__': # path = 'images/text.jpg' path = 'images/scannedImage.png' out_path = 'croppedImage.png' try: process_image(path, out_path) except Exception as e: print('%s %s' % (path, e))


답변 4

1

뉴럴웍스랩님의 프로필 이미지
뉴럴웍스랩
지식공유자

문서원본:

https://www.danvk.org/2015/01/07/finding-blocks-of-text-in-an-image-using-python-opencv-and-numpy.html

테스트에 사용한 이미지 파일:

https://www.danvk.org/images/milstein-backing.jpg

1

뉴럴웍스랩님의 프로필 이미지
뉴럴웍스랩
지식공유자

https://gist.github.com/luipillmann/d76eb4f4eea0320bb35dcd1b2a4575ee
여기 소스를 테스트해보니 잘 됩니다.

다만 opencv 버전 차이로 생기는 문제가 있으면 소스를 살짝 수정해야 합니다.

findContours()의 리턴값이 2개인지, 3개인지에 따라 수정 필요합니다.

findContours()가 두 군데 있습니다. 

이런 오류가 발생하면 findContours()의 리턴값이 2개이라는 의미로,   아래의 소스와 같이 수정 필요합니다.

ValueError: not enough values to unpack (expected 3, got 2)

수정 전 : #_, contours, hierarchy = cv2.findContours(dilated_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

수정 후:        contours, hierarchy = cv2.findContours(dilated_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

0

images/scannedImage.png only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices

이에러는

저기 kernel 에 나누는 / 슬러시를 더블 // 로 바꾸면 해결 되는거 확인했습니다.

0

저도 같은 오류가 발생하여 디버깅을 해봤는데요.. 오류 발생하는 곳을 찾긴했는데, 

dilate 함수 내용중에
kernel[(N - 1) / 2, :] = 1 이곳에서 Error가 발생하던데..

왜 발생하는지 이해가 안가네요..답변좀 부탁드립니다.
gaeggol님의 프로필 이미지
gaeggol

작성한 질문수

질문하기