작성
·
25
0
1-1
SELECT title, movie_genres
FROM advanced.array_exercises
CROSS JOIN UNNEST(genres) AS movie_genres
LIMIT 100
1-2
SELECT title,
actor.actor,
actor.character
FROM advanced.array_exercises
CROSS JOIN UNNEST(actors) AS actor
1-3
SELECT title, actors.actor, actors.character, genres
FROM advanced.array_exercises
CROSS JOIN UNNEST(actors) AS actors
CROSS JOIN UNNEST(genres) AS genres
WHERE actor = 'ChrisEvans'
1-4
select user_id
, event_date
, event_name
, user_pseudo_id
, param.key as key
, param.value.string_value as string_value
, param.value.int_value as int_value
from advanced.app_logs
, unnest(event_params) as param
2-1
select order_date
, sum(if(user_id = 1,amount,0)) as user_1
, sum(if(user_id = 2,amount,0)) as user_2
, sum(if(user_id = 3,amount,0)) as user_3
from advanced.orders
group by order_date
order by order_date
2-2
select user_id
, max(if(order_date = '2023-05-01',amount,0)) as `2023-05-01`
, max(if(order_date = '2023-05-02',amount,0)) as `2023-05-02`
, max(if(order_date = '2023-05-03',amount,0)) as `2023-05-03`
, max(if(order_date = '2023-05-04',amount,0)) as `2023-05-04`
, max(if(order_date = '2023-05-05',amount,0)) as `2023-05-05`
from advanced.orders
group by user_id
order by user_id
2-3
select user_id
, max(if(order_date = '2023-05-01',1,0)) as `2023-05-01`
, max(if(order_date = '2023-05-02',1,0)) as `2023-05-02`
, max(if(order_date = '2023-05-03',1,0)) as `2023-05-03`
, max(if(order_date = '2023-05-04',1,0)) as `2023-05-04`
, max(if(order_date = '2023-05-05',1,0)) as `2023-05-05`
from advanced.orders
group by user_id
order by user_id
2-4
select user_id
, event_date
, event_name
, user_pseudo_id
, max(if(param.key = 'firebase_screen', param.value.string_value, null)) as firebase_screen
, max(if(param.key = 'food_id', param.value.int_value, null)) as food_id
, max(if(param.key = 'session_id', param.value.string_value, null)) as session_id
from advanced.app_logs
, unnest(event_params) as param
where event_date = '2022-08-01'
group by all
3-1
with base as
(
select event_date
, event_name
, event_timestamp
, user_id
, user_pseudo_id
, platform
, max(if(param.key = 'firebase_screen', param.value.string_value, null)) as firebase_screen
from advanced.app_logs
, unnest(event_params) as param
where event_date between '2022-08-01' and '2022-08-18'
group by all
),
filter_event as
(
select
* except(event_name, firebase_screen)
, concat(event_name, "-", firebase_screen) as event_name_with_screen
from base
where event_name in ('screen_view', 'click_payment')
)
select event_date
, event_name_with_screen
, case when event_name_with_screen = 'screen_view-welcome' then 1
when event_name_with_screen = 'screen_view-home' then 2
when event_name_with_screen = 'screen_view-food_category' then 3
when event_name_with_screen = 'screen_view-restaurant' then 4
when event_name_with_screen = 'screen_view-cart' then 5
when event_name_with_screen = 'click_payment-cart' then 6
else null
end as step_number
, count(distinct user_pseudo_id) as cnt
from filter_event
group by all
having step_number is not null
order by event_date
3-2
with base as
(
select event_date
, event_name
, event_timestamp
, user_id
, user_pseudo_id
, platform
, max(if(param.key = 'firebase_screen', param.value.string_value, null)) as firebase_screen
from advanced.app_logs
, unnest(event_params) as param
where event_date between '2022-08-01' and '2022-08-18'
group by all
),
filter_event as
(
select
* except(event_name, firebase_screen)
, concat(event_name, "-", firebase_screen) as event_name_with_screen
from base
where event_name in ('screen_view', 'click_payment')
),
daily_group as
(
select event_date
, event_name_with_screen
, case when event_name_with_screen = 'screen_view-welcome' then 1
when event_name_with_screen = 'screen_view-home' then 2
when event_name_with_screen = 'screen_view-food_category' then 3
when event_name_with_screen = 'screen_view-restaurant' then 4
when event_name_with_screen = 'screen_view-cart' then 5
when event_name_with_screen = 'click_payment-cart' then 6
else null
end as step_number
, count(distinct user_pseudo_id) as cnt
from filter_event
group by all
having step_number is not null
order by event_date
)
select event_date
, max(if(event_name_with_screen = 'screen_view-welcome',cnt,null)) as screen_view_welcome
, max(if(event_name_with_screen = 'screen_view-home',cnt,null)) as screen_view_home
, max(if(event_name_with_screen = 'screen_view-food_category',cnt,null)) as screen_view_food_category
, max(if(event_name_with_screen = 'screen_view-restaurant',cnt,null)) as screen_view_restaurant
, max(if(event_name_with_screen = 'screen_view-cart',cnt,null)) as screen_view_cart
, max(if(event_name_with_screen = 'click_payment-cart',cnt,null)) as click_payment_cart
from daily_group
group by all
order by event_date
답변 1
0
안녕하세요, 인프런 AI 인턴입니다. cg0630님.
BigQuery를 활용한 ARRAY, STRUCT 및 PIVOT과 관련된 SQL 쿼리 작성 연습 문제에 대한 질문을 주셨군요. 데이터 분석 과정에서 구조적 데이터를 어떻게 다루고 변환할 수 있는지를 이해하는 것은 매우 중요합니다. 아래는 질문에 관련된 기존 답변과 설명들을 확인할 수 있는 자료입니다.
ARRAY, STRUCT 연습문제와 관련해서는 아래의 자료를 참조해 보세요.
PIVOT 연습문제와 관련하여:
퍼널 쿼리 연습 문제에 대해서는:
이러한 자료들이 cg0630님의 SQL 실습에 도움이 되길 바라며, 쿼리 작성 후 결과를 해석하는데에도 큰 도움이 될 것입니다. SQL 작성 시 쿼리의 목적과 그에 따른 결과 해석은 매우 중요함을 항상 염두에 두시기 바랍니다.
저는 질문자님의 이해를 돕고자 지식공유자님의 기존 답변을 참고하여 유사한 답변 링크를 추천해드리고 있습니다. 현재 베타 기능으로 답변이 만족스럽지 않을 수 있는 점 양해 부탁드립니다. 🙏 추가적으로 궁금한 점이 있으시면, 이어서 질문해 주세요. 곧 지식공유자께서 답변해 주실 것입니다.