인프런 커뮤니티 질문&답변

ha_junv님의 프로필 이미지

작성한 질문수

선형대수학개론

안녕하세요, 1.4 강 Theorem 4 관련 질문입니다.

19.09.02 18:06 작성

·

195

2

매번 강의 잘 듣고 있습니다. 감사합니다. 

다름이 아니라 1.4강 Theorem 4 를 이해하던중 의문점이 생겨 질문을 드리게 되었습니다. (15:39)

 

Theorem 4의 4번의 경우 A 의 모든 Row 가 pivot position 을 가져야 한다고 작성되어 있습니다. 

바로 Ax = b가 의 each b가 solution을 갖기 때문인데요. 

A의 해당 행 중 [0 0 0 0 0 0] 으로 b 까지 0 인 경우에는 consistent로 해가 있는 경우 아닌가 했습니다. 

이 경우 A에 pivot position이 없는 듯 해보여서요! 

아마 저의 부족한 이해로 생긴 질문일듯 하나, 질문 드려봅니다. 

항상 감사드립니다.

답변 2

3

조범희 (타블렛깎는노인)님의 프로필 이미지

2019. 09. 02. 20:55

안녕하세요.

"항상" 이라는 조건을 생각하시면 될겁니다. 물론 생각하신것처럼 b의 맨 마지막 entry가 0이고 A의 맨 마지막 row들이 모두 0이고 나머지 row들은 pivot position을 지녔다면 이 경우에는 해가 있는 경우가 맞습니다. 하지만 모든 b (임의의 b)에 대해서 항상 해를 가지고 있는건 아니죠?

a 문장을 다시 한번 생각해봅시다.

"For each b in Rm" <- Rm space에 있는 임의의 벡터 b를 나타냅니다.

"Ax=b has a solution" <- 그런 임의의 벡터 b에 대해서 Ax=b 식의 솔루션이 있다라는 의미입니다.

즉 b의 맨 마지막 entry가 0인 그런 특수상황뿐만이 아니라 임의의 모든 b에 대해서 solution을 가지기 위해서는

d. A has a pivot position in every row 여야하는 상황입니다.

즉 d의 문장이 의미하는 바는 임의의 b에 대해서 Ax=b가 솔루션을 가지고 있다라는 의미이고, 이는 a문장과 동치(equivalent)입니다.

도움이 되셨길 바랍니다.

혹시라도 답변이 부족하다면 언제든지 다시 질문주시고, 이해가 가는 답변이라면 하트를 눌러서 알려주세요 ㅎㅎ

그럼 언제든 또 질문주세요 :)

감사합니다.

1

ha_junv님의 프로필 이미지
ha_junv
질문자

2019. 09. 03. 06:32

이해가 너무 잘갔습니다. 

항상 감사합니다. :)

오늘도 좋은 하루 보내세요! 

ha_junv님의 프로필 이미지

작성한 질문수

질문하기