인프런 커뮤니티 질문&답변

Alex님의 프로필 이미지
Alex

작성한 질문수

[개정판] 딥러닝 컴퓨터 비전 완벽 가이드

SPPNet의 이해 02 - Spatial Pyramid Pooling을 활용한 Object Detection

선생님 강의 너무 잘 듣고 있습니다. 질문이 있습니다.

작성

·

102

0

  1. SPP를 통해서 padding 된 이미지를 가지고 Annotation 파일의 정보와 비교해서 유사도를 측정할텐데 Annotation안에 있는 모든 구역의 정보와 비교하는 것인가요?
    예) TV, 사람, 의자

  2. 사이즈가 홀수인 경우에는 다른 질문에 응답처럼 padding 한다고 되어있는데 다른 모든 경우에도 정보가 부족하다면 해당 공간을 0으로 채우는 건가요?

답변 1

0

권 철민님의 프로필 이미지
권 철민
지식공유자

안녕하십니까,

강의를 잘 듣고 계시다니, 저도 기쁩니다. ^^

1번 질문은 제가 질문을 잘 이해하지 못했습니다. 좀 더 자세하게 질문 내용 부탁드립니다.

2번은

=> 네, 일반적으로 대부분 딥러닝 이미지 모델에서는 해당 공간을 padding 0으로 처리합니다.

 

감사합니다.

Alex님의 프로필 이미지
Alex
질문자

늘 친절하게 답변 주셔서 감사합니다.

애노테이션 파일 정보안에 예를 들어 3개의 오브젝트의 좌표와 label이 있다고 가정하겠습니다(사람, TV, 의자) 그러면 패딩된 이미지가 이 3가지의 좌표와 label을 모두 비교하는지 궁금합니다.

권 철민님의 프로필 이미지
권 철민
지식공유자

음, 여전히 잘 이해하지 못했습니다만, 먼저...

SPP는 기존의 RCNN에 SPP Layer가 하나 더 있는 거라고 생각하시면 됩니다. 기존 RCNN Feature Map을 SPP 기반으로 Vector 형태로 변경하는 방식이 추가된 것 입니다.

그리고 학습시에는 RCNN과 마찬가지로 Selective Search로 검출된 오브젝트 영역과 Annotation에 있는 오브젝트들 중에서 IOU가 특정 IOU 이상인(가령 0.5) 오브젝트들에 대해서 학습시 비교하여 모델을 학습하는 방식입니다.

질문에서

SPP를 통해서 padding 된 이미지를 가지고 Annotation 파일의 정보와 비교해서 유사도를 측정할텐데 Annotation안에 있는 모든 구역의 정보와 비교하는 것인가요?

=> 이 질문이 모든 구역이 아닌, 특정 IOU 이상인 오브젝트들에 대해서 학습한다라고 답변드리면 의도하신게 맞는지 모르겠습니다.

Alex님의 프로필 이미지
Alex
질문자

아 이해가 되었습니다.

"그리고 학습시에는 RCNN과 마찬가지로 Selective Search로 검출된 오브젝트 영역과 Annotation에 있는 오브젝트들 중에서 IOU가 특정 IOU 이상인(가령 0.5) 오브젝트들에 대해서 학습시 비교하여 모델을 학습하는 방식입니다."

제가 여쭤본 질문은 굵은 글씨로 되어있는 부분입니다. annotation에 있는 오브젝트들 중에서 여러개를 모두 비교해 보는가? 라는 질문이었습니다. 혹 그렇다면 학습시킬 때 0.5가 IOU가 두개 이상되는 것이 있다면 어느 것으로 학습을 하게 되나요?

권 철민님의 프로필 이미지
권 철민
지식공유자

논문에 명확하게 나와있지는 않지만, 제일 큰 iou를 기반으로 적용했을 것 같습니다.

 

Alex님의 프로필 이미지
Alex
질문자

답변 주셔서 감사합니다!

Alex님의 프로필 이미지
Alex

작성한 질문수

질문하기