인프런 영문 브랜드 로고
인프런 영문 브랜드 로고

인프런 커뮤니티 질문&답변

yanicong님의 프로필 이미지
yanicong

작성한 질문수

[퇴근후딴짓] 빅데이터 분석기사 실기 (작업형1,2,3)

stratify 설정 질문

해결된 질문

작성

·

138

0

선생님 강의 잘 듣고 있습니다. 다름이 아니라 예전에 혼자 공부할 때 데이터 분할을 할 때 stratify를 설정해서 데이터 불균형을 처리한다고 들었는데, 제가 놓친 것일 수도 있지만 선생님 강의에서는 따로 이에 관한 설명을 본 적이 없어서 질문드립니다. 2유형을 푸는 데에 있어서 stratify는 굳이 설정을 안 해도 문제가 없을까요? 아니면 시험 볼 때 설정을 해놓는 게 더 좋을까요?

답변 2

1

퇴근후딴짓님의 프로필 이미지
퇴근후딴짓
지식공유자

분류 모델일 때 사용하면 좋을 것 같아요!💪💪💪

빅분기가 외울 부분이 많다보니 따로 설명하진 않은 것이 맞습니다!

0

안녕하세요, 인프런 AI 인턴입니다.

yanicong님의 질문과 관련하여 “stratify=y 옵션을 강조하는 글을 본적 있습니다. 이렇게 설정하여야 하는 이유가 있나요?” 에 대한 유사한 질문에 대한 답변을 찾았습니다. strategify 옵션은 훈련 데이터와 검증 데이터가 원본 데이터셋의 클래스 비율을 반영하도록 하기 위한 것으로, 분류 문제에서 타겟값의 불균형이 심할 때 유용합니다. 특히 회귀 문제에서는 사용이 적합하지 않다는 점이 강조되었습니다.

다음은 참고하실 수 있는 관련 답변의 링크입니다:
- 데이터 분리할때 stratify=y 옵션

본 답변은 분류 문제를 다루는 과정에서 데이터셋의 샘플 분포가 클래스별로 불균형할 때 stratify 파라미터를 사용함으로써, 각 클래스의 비율을 유지해 보다 안정적인 모델 학습에 도움을 줄 수 있다는 점을 설명하고 있습니다. 실제 시험에서 데이터의 불균형 문제를 효과적으로 다루기 위해서는 stratify 옵션을 적절히 활용하는 것이 좋습니다.

이 답변이 yanicong님의 궁금증 해결에 도움이 되기를 바라며, 특히 빅데이터 실기시험에서 데이터 분할 시 이러한 설정이 필요할 수 있다는 점을 참고하시면 좋을 것 같습니다.

저는 질문자님의 이해를 돕고자 지식공유자님의 기존 답변을 참고하여 유사한 답변 링크를 추천해드리고 있습니다.
현재 베타 기능으로 답변이 만족스럽지 않을 수 있는 점 양해 부탁드립니다. 🙏
추가적으로 궁금한 점이 있으시면, 이어서 질문해 주세요. 곧 지식공유자께서 답변해 주실 것입니다.

yanicong님의 프로필 이미지
yanicong

작성한 질문수

질문하기