작성
·
127
답변 1
0
Dense(5, activation='relu', input_shape=(5,)), ==> 5를 32 또는 64로 키우세요
Dense(3, activation='relu'), ==> 3을 16 또는 32로 키우세요
Dense(1, activation='sigmoid') ==> OK
Dense layer의 unit 갯수는 데이터 컬럼수 5와는 아무 상관이 없습니다. 데이터가 데이터 컬럼수는 input_shape 에 지정하는 숫자입니다. 지금 만드신 모델의 model.summary() 에서 Total parameter 갯수 52는 너무도 작은 모델을 만드신 것입니다. 데이터 volume 이 크시면 Dense layer의 unit 수를 64로 하시고 별로 많지 않으면 (몇 만건 이내) 32로 하세요. 감사합니다.
모델에는 이상이 없어 보이는데 어떤 DATA 를 사용하고 계신지 몰라서 저도 원인을 모르겠습니다. 데이터와 코드를 모두 제공해 주시면 제가 직접 코드 실행해 보면서 debugging 해야할 것 같습니다. 감사합니다.
조언해주신대로 dense를 64와 32로 설정하고 해보았더니
아무리 dense부분을 늘리고 줄이거나 threshold를 조절하더라도
pricision이 상대적으로 높고 recall 부분이 43이상이 되지 않습니다.
원인이 있을까요?